Recall let \(M \) be a Riemannian manifold of dimension \(n \); \(U \) a submanifold of dimension \(n-1 \) which is homeomorphic to a disk. We choose a unit normal in a fixed direction near \(U \). Geodesic coordinates near \(U \) are \((t, x_1, \ldots, x_n)\) such that \(t \mapsto (t, x_1, \ldots, x_n) \) is the geodesic through \(x \) in the direction of the unit normal.

Prop. In geodesic coordinates, \(g_{ii} = 0 \) for \(2 \leq i \leq n \) and \(g_{11} = 1 \).

Proof. Recall that a geodesic should locally have
\[
\frac{d^2 x_k}{d t^2} = -\varepsilon_{ij} k^j \frac{d x_i}{d t} \frac{d x_j}{d t}.
\]
In our case \(\frac{d x_i}{d t} = 0 \) for \(i \neq 1 \), so \(\frac{d^2 x_k}{d t^2} = 0 \) for all \(k \). Ergo \(0 = -\varepsilon_{1j} k^j \frac{d x_1}{d t} \frac{d x_j}{d t} = -\varepsilon_{11} k^1 \), so each \(-\varepsilon_{11} k^3 = 0 \). Given that \((g_{ij}) \) is invertible, we see that \([1, 1] = 0 \) as well. So \(\frac{1}{2} \left(\frac{\partial g_{11}}{\partial x_1} + \frac{\partial g_{11}}{\partial x_1} - \frac{\partial g_{11}}{\partial x_k} \right) = 0 \Rightarrow \frac{\partial g_{11}}{\partial x_1} = \frac{1}{2} \frac{\partial g_{11}}{\partial x_k} \) for all \(k \).

If we take \(k = 1 \), \(\frac{\partial g_{11}}{\partial x_1} = \frac{1}{2} \frac{\partial g_{11}}{\partial x_1} \Rightarrow \frac{\partial g_{11}}{\partial x_1} = 0 \), so for fixed \(x_2, \ldots, x_n \), \(g_{11} \) is a constant. When \(x_1 = 0 \), the initial condition of the geodesic through \((0, x_2, \ldots, x_n)\) is that it is tangent to the unit normal to the surface, so in particular its tangent vector \(\frac{\partial}{\partial x_1} \) at this point has length one. Ergo \(g_{11} = 1 \) when \(x_1 = 0 \) hence \(g_{11} = 1 \) throughout the geodesic coordinate neighborhood. Now consider \(2 \leq k \leq n \) and \(\frac{\partial g_{11}}{\partial x_1} = \frac{1}{2} \frac{\partial g_{11}}{\partial x_k} = 0 \) since \(g_{11} \) is constant.

Now for \(x_1 = 0 \), by assumption \(\frac{\partial}{\partial x_1} \) and \(\frac{\partial}{\partial x_k} \) are orthogonal, so
9k vanishes when $x_i = 0$, so it vanishes for all $x_i \neq 0$.

We can now check that short geodesics are paths of shortest length:

Prop. 1 Let $p : [0, 1] \to M$ be a geodesic. Then there exists an $\varepsilon > 0$ such that the restriction of p to $[0, \varepsilon]$ is the unique path of shortest length from $p(0)$ to $p(\varepsilon)$.

Prop. 2 Let $x \in M$. There exists a neighborhood \mathcal{N} of x such that for all $y \in \mathcal{N}$ there is a unique path of shortest distance from x to y, which is a geodesic.

Proof We choose a hyperplane V orthogonal to p at $t = 0$ and construct geodesic coordinates as previously. Choose ε and δ sufficiently small that the set \mathcal{N} of points with coordinates

$$\begin{align*}
&\delta \not\in \mathbb{R}^n \quad \text{for all } t \in [0, \varepsilon], \\
&0 < l_1 < \ldots < l_n < \delta
\end{align*}$$

is contained in the interior of the geodesic coordinate neighborhood. We assume that the coordinates of $p(t)$ are $(0, \ldots, 0)$, so that $p(0) = (0, \ldots, 0)$. Then $l_1 = \varepsilon$, where we let l_1 denote the length of the restriction of p to $[0, \varepsilon]$.

Now we check that if $q : [0, \varepsilon] \to M$ is any admissible path with $q(0) = p(0)$ and $q(\varepsilon) = p(\varepsilon)$, then $l_q \geq l_1$. First, suppose that $q([0, \varepsilon])$ lies entirely within the neighborhood \mathcal{N} and the x_1-coordinate of $q(t)$ is monotonically increasing. Reparametrizing q we can arrange that $q(t)$ and $p(t)$ have the same x_1 coordinate, namely t. We then write $q(t) = (t, x_2(t), \ldots, x_n(t))$. Since $g_{1k} = g_{k1} = 0$

and $g_{11} = 1$, we see that
\[l^2 = \int_0^\infty \sqrt{\sum_{i,j} g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}} \, dt \]

\[= \int_0^\infty \sqrt{1 + \sum_{i,j} g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}} \, dt \]

Since \((g_{ij})\) is positive definite, its minor \((g_{ij})_{i,j \leq n}\) is also positive definite, so in particular

\[\sum_{i,j} g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt} > 0, \]

implying that

\[l^2 \geq \int_0^\infty \sqrt{1} \, dt = \infty \Rightarrow l \geq 1. \]

Exercise Extend this argument to paths which have nonmonotonic first coordinate, or which are long enough to go outside of the neighborhood \(N\).

For part (ii), given a unit tangent vector \(x \in T_xM\), there is a unique geodesic \(p_x: [0, \varepsilon_x] \to M\) through \(x\) which is tangent to \(x\), if \(\varepsilon_x > 0\) chosen small enough that this is a path of shortest length.

Indeed, we can choose \(\varepsilon_x\) small enough that it also works for nearby unit tangent vectors \(y\). (To see this, pick a local diffeomorphism of \(M\) moving \(x\) to \(y\) regarded \(x\) as fixed while the metric varies; this produces small variations of the \(g_{ij}\), and the \(\varepsilon\) in part (i) can be used to work for sufficiently small variation of the \(g_{ij}\).

So for each unit vector \(x \in T_xM\) there is an \(\varepsilon_x > 0\) and a nbhd \(N_x\) of \(x\) in the unit ball of \(T_xM\) at \(p_x: [0, \varepsilon_x] \to M\) is a path of shortest length for all \(y \in N_x\). Since the unit ball in \(T_xM\) is compact, it can be covered by finitely many of the nbhds \(N_x\). Letting \(\varepsilon\) be the minimum of the corresponding \(\varepsilon_x\), we can take \(N\) to be the set of points connected to \(x\) by a geodesic of length \(\leq \varepsilon\).
If M is a connected Riemannian manifold, we make M into a metric space by defining $d(x,y)$ to be the infimum of $|p|$, where p is a path from x to y.

Thm Let M be a compact connected Riemannian manifold, and let x and y be points of M. Then there is a geodesic $p: [0,1] \to M$ with $p(0) = x$ and $p(1) = y$.

Remark The condition in the theorem is stronger than it needs to be; this is true for manifolds that are geodesically complete, i.e., any well-paced geodesic can be extended to $(-\infty, \infty)$.

PF Let $\{p_i\}$ be a sequence of well-paced paths from x to y satisfying $d(p_i) \to d(x,y)$. Because they are well-paced, if $0 \leq a \leq b \leq 1$ we have that $d(p_i(a), p_i(b)) = (b-a) |p_i|_1$ and it follows that the p_i are equicontinuous. Hence there is a subsequence that converges uniformly to a path p. This is clearly a geodesic (it's not immediately obvious that it's smooth). But on each sufficiently short interval $0 \leq a \leq b \leq 1$, $p(b)$ is near enough to $p(a)$ that the unique path of shortest length between them is a geodesic. It follows that p itself is a geodesic.

Now we can consider applications to Lie groups.

Thm Let G be a compact Lie group. There is a Riemannian metric on G which is invariant under left and right translation. In this metric, any geodesic is a (right or left) translate of a path $t \mapsto \exp(tx)$ for some $x \in G$.
Since G is a compact group acting by Ad on the real vector space g, there is an $Ad(g)$-inner product on g. This gives us an inner product on T_eG, which we transfer to T_gG by the left-transformation map. Right-translation in principle induces a different isomorphism $T_eG \rightarrow T_gG$, but these two maps differ by the derivative of conjugation, namely $Ad(g) : g \rightarrow g$, so since our inner product is invariant under $Ad(g)$, the invariant metric thusly defined is left under both left and right translation.

To show that any geodesic is a translate of the exponential map, it suffices to check that any short segment of a geodesic is of the form $t \rightarrow \exp(tx)$, but the metric is translation-invariant, so this just asks us to check that geodesics near the identity are of the form $t \rightarrow \exp(tx)$.

Case I $G \cong \mathbb{R}^n/\mathbb{Z}$ is a torus, and $T_eG \cong \mathbb{R}^n$ can be assumed to have the standard inner product. Then geodesics are just quotients of straight lines in \mathbb{R}^n and therefore translates of the exponential map.

Case II For general G, let $x \in g$ and $Ex : (-\epsilon, \epsilon) \rightarrow G$ be the geodesic through the origin tangent to $x \in g$. For $t \in \mathbb{R}$, $t \mapsto Ex(tv)$ is the geodesic through the origin tangent to DV, so that $E(xv) : E_{tv}(x)$. So there is a small U of the origin in g and a map $E : U \rightarrow G$ $st. Ex(t) = E(tx)$ for $x, tv \in U$. Wts this is the same as the exponential map.
Given \(g \in G \), then \(\text{trans} \) \((E(tg)) \) on the left by \(g \) and the
right by \(g^{-1} \) gives a one-parameter, one-point homogeneous to \(\text{Ad}(g)X \).
Thus if \((x, t) \in \mathcal{V} \), \(\mathcal{G}E(tx)g^{-1} = E(t\text{Ad}(g)x) \). For \(\text{Exp} \) \((x) \), let \(T \) be a
maximal torus containing the one-parameter subgroup \(\text{exp}(tx) \), \(t \in \mathbb{R}^n \).
Then \(E(tx) \) commutes with \(g \) when \(t \) \(\in \mathcal{U} \). Since the path \(t \mapsto E(tx) \)
runs through the centralizer \(\mathcal{C}(T) \) and the centralizes through \(\mathbb{N}(T) \).
Recalling that the closed component of \(\mathbb{N}(T) \) containing the identity
is 1, we see that \(E(tx) \) lies in \(T \). But the geodesics in \(T \) are
exactly \(\exp (tx) \). \(\square \)

Thm: Let \(G \) be a Lie group, and \(g \) its Lie algebra.
Then the exponential map \(\exp : g \to G \) is surjective.

PF: Put a translation-invariant Riemannian structure on \(G \). Then given
\(g \in G \), there is a geodesic path from the identity to \(g \). But this
paths of the form \(t \mapsto \exp(tx) \).

Thm: Let \(G \) be a Lie group and \(T \) a maximal torus.
There exists \(k \in G \), \(\forall \) \(g \in T \).

PF: Let \(g \) and \(t \) be the Lie algebras of \(G \) and \(T \), then \(t \)
be a generator of \(T \). Let \(x \in g \) and \(t \) be such that \(\text{exp}(t) \)
and \(e^t \) coincide, which is possible since \(e^t \) is unique since \(g \) is compact.
Since \(G \) is a compact group acting by \(\text{Ad} \) on \(G \), there is
inner product \(\langle \cdot, \cdot \rangle \) on \(g \). Choose \(x \in G \) so that
the real value \(\langle x, \text{Ad}(t)x \rangle \) is maximal. (This maximum is
achieved, by compactness of \(G \).) Let \(t = \text{Ad}(k)x \). Then
$\exp(H) = e^H$ is a generator for eTK^{-1}.

If Y is arbitrary, then $\langle x, \text{Ad}(e^{tY})H \rangle_{e^{\mathfrak{h}}} = \langle x, \text{Ad}(Y)H \rangle = \langle x, [H, Y] \rangle = -\langle x, [H, Y] \rangle$.

Since the bilinear form is invariant under Ad, it is in fact under e^t, meaning that $0 = \langle x, [H, Y] \rangle + \langle [H, X], Y \rangle$. So $\langle [H, X], Y \rangle = 0$ for all Y. Therefore $\exp(H)$ commutes with $\exp(tX)$ for all $t \in \mathbb{R}$.

Since $\exp(H)$ generates eTK^{-1} the one-parameter subgroup $\exp(tX)$ is contained in the centralizer of eTK^{-1}. But eTK^{-1} is in fact a maximal torus, so it follows that $\exp(tX) \subseteq eTK^{-1}$.

In particular, $g \exp(tX) \subseteq eTK^{-1}$.

Thus (Cartan) let G be a compact connected Lie group and T be a maximal torus. Then every maximal torus is conjugate to T, and every element of G is contained in a conjugate of T.

PF The second statement is implied by the first one. To show the first statement, let T' be another maximal torus and g a generator. Then eTK^{-1} is contained in $eT'K^{-1}$ for some K. As both are maximal tori, they are equal.

Proof Let G be a connected compact Lie group, $S \subseteq G$ a torus (not necessarily maximal), and $g \in G(s)$ an element of S.

By S and g, then H has a topological generator that is in S.
Since H is closed and abelian, its connected component H^0 containing the identity is a torus. Let h_0 be a generator of the torus. Now H/H^0 is compact and discrete, hence finite. Since $SS H^0$ and S and g together generate a dense subgroup of H, the finite group H/H^0 is cyclic and generated by gH^0. Let r be the order of this group, so $g^r \in H^0$. Since the rth power map $H^0 \to H^0$ is surjective, if $u \in H^0$ then $(gu)^r = h_0$. Then the group generated by h_0 contains h_0 and a generator $gH^0 = (gu)H^0$ of H/H^0. So h is a topological generator of H.

Prop. If G is a Lie group and $u \in G$, then the centralizer $C_G(u)$ is a closed Lie subgroup, and its Lie algebra is $\mathfrak{g} \times \mathfrak{e}(u)$.

Pf. To show $H = C_G(u)$ is a closed submanifold of G, it suffices to show its intersection with a small nbhd of the identity is a closed submanifold. In a nbhd N of the origin in \mathfrak{g}, the exponential map is a diffeomorphism onto $\exp(N)$, and we see that the preimage of $C_G(u)$ in N is a vector subspace by recalling that conjugation by u corresponds to the linear map $\text{Ad}(u)$ of N. In particular, $\exp(tx)u^{-1} = \exp(t \text{Ad}(u)x)$, so $\exp(tx) \in C_G(u)$ for all $t \in \mathbb{R}$.
Thm Let G be a compact Lie group and $S \subset G$ a torus. Then the centralizer $C^c_G(S)$ is a closed compact Lie subgroup of G.

PF Let $g \in C^c_G(S)$. By the previous propn, there exists an element $h \in C^c_G(S)$ which generates the closure H of the group generated by S and g. Let T be a maximal torus in G containing h. Then T centralizes S, so the closure of $T \cdot S$ is a compact abelian group, hence a torus, and by maximality of T we must have $S \leq T$. Now clearly $T \leq C^c_G(S)$, and since T is compact, $T \leq C^c_G(S)^o$. Now $g \in H \leq T \leq C^c_G(S)^o$. E.g. $C^c_G(S)^o = C^c_G(S)$, i.e. $C^c_G(S)$ is connected. Now if u is a generator of $C^c_G(S)$, then $C^c_G(S) = C^c_G(u)$, so by the last thm $C^c_G(S)$ is a closed compact Lie subgroup.