Intro to Principal Bundles

Recall $G 	o M$ smoothly, freely, and properly, then M/G is a manifold and $\pi ^{-1}(U) \cong U \times G$

Locally we have $\pi ^{-1}(U) \cong U \times G$

This is an example of a principal bundle:

Defn: A fiber bundle w/ fiber F is a map $p: E \to B$ w/ the property that any point $x \in B$ has a neighborhood $U \subset B$ for which there exists a homeomorphism $\varphi _x : F \times U \to p^{-1}(U)$ for which $p \circ \varphi _x = \pi _x$ the projection map onto U. (last condition is "over U_x")

Remark: This generalizes the notion of a product $F \times B \to B$.

Nontrivial example

1. The Mobius band over the circle

2. Any fiber bundle whose fiber F is a discrete space is a covering map

Say $p: E \to B$ is a fiber bundle w/ fiber F. Then we can pick an open cover $U = \{U_i\}$ on which we have a $\varphi _i : E_{U_i} : F \times U \to p^{-1}(U_i)$ over U_i on overlaps $U_{ij} = U_i \cap U_j$ we have maps $F \times U_{ij} \xrightarrow{\varphi _i \times 1} p^{-1}(U_{ij})$.
Let the maps E_{ij} satisfy a cocycle condition:
\[
\begin{align*}
E_{ij} E_{jk} &= E_{ik} \\
E_{ii} &= \text{id}
\end{align*}
\]

For fixed $x \in U_{ij}$, the map $E_{ij}(\cdot, x)$ is a homeomorphism $F \cong F$, and we can alternately write $E_{ij} : U_{ij} \rightarrow \text{Homeo}(F)$. Assuming F is locally compact, E_{ij} or E_{ij} is.

Special cases E_{ij} land in a specific subgroup of $\text{Homeo}(F)$.

Defn Let $G \leq \text{Homeo}(F)$. (That is, G is a group acting faithfully on F.) A fiber bundle $p : E \rightarrow B$ w/ fiber F and structure group G is a fiber bundle for which there exists a trivialization \mathcal{U} for which the corresponding cocycle $E_{ij} : U_{ij} \rightarrow \text{Homeo}(F)$ factors as $U_{ij} \xrightarrow{E_{ij}} \text{Homeo}(F)$.

These E_{ij} satisfy the cocycle condition.

Example Let V be a real or complex vector space. Then a vector bundle over a (locally compact) space B is a fiber bundle w/ fiber V and structure group $GL(V)$.

(Err, the transition maps E_{ij} are linear on the fibers.)

Example The tangent bundle TM of a real n-dimensional manifold M is an n-dimensional vector bundle over M. (The transition maps are the derivatives of the coordinate change maps.)
Let G be a topological group. A principal G-bundle is a fiber bundle $p: P \to B$ with fiber G and structure group G, where G acts on itself by left-translation. Hence a principal G-bundle has trivializing maps

$$
\phi_i : G \times U_i \to p^{-1}(U_i)
$$

at the cocycle $\phi_{ij} : G \times U_{ij} \to G \times U_{ij}$ is of the form

$$
\phi_{ij}(g, x) = (\psi_{ij}(x) \cdot g, x)
$$

for some map $\psi_{ij} : U_{ij} \to G$.

Exercise A quotient map M of a free proper action is a principal G-bundle.

Alternate characterizations

A principal G-bundle is a locally trivial free G-space P with orbit space B.

Proof A morphism of principal G-bundles $P \to B$ and $Q \to B$ is a map $P \to Q$ so $p \circ \sigma \to q$ and σ commutes with the action of G on either side.
Naturally we say that a morphism is an \textit{isomorphism} if it admits an inverse in the same category.

Prop. Every morphism of principal G-bundles is in fact an isomorphism.

Remark. This illustrates how different this notion is from a fiber bundle.

Let $P = G = B \times G$ be actual products. Then $\sigma(x, g) = (x, f(x)g)$ for some $f \in F_B$. For $F : G \to G$, σ is an isomorphism with inverse given by $\sigma^{-1}(x, g) = (x, F(x)^{-1}g)$. Since every principal bundle is locally trivial, this in fact proves the proposition in general.

Prop. A principal G bundle is trivial if and only if it admits a section.

PF. If $P \to B$ is trivial, it admits a section by $s : B \times G \to P$. Conversely, let $s : B \to P$ be a section. Then $\phi : B \times G \to P$

$$\quad (x, g) \mapsto s(x) \cdot g$$

is a morphism of principal bundles, hence an isomorphism. So P is trivial.

Remark. This is incredibly untrue of vector bundles, which always possess a section via inclusion $X \times \mathbb{R}^n$. (Whether a vector bundle has an everywhere nonzero section is more interesting but still doesn't imply triviality.)
Notation Let P_B be the set of isomorphism classes of principal G-bundles over B.

More examples

1. We already have $G \times M$, M is principal G-bundle. Notice that this includes $H \leq G$ a closed subgroup, so that $G \to G/H$ is a (smooth) principal H-bundle. So, e.g., the bundles we considered in February are all examples: $O(n) \to O(n)/O(n_1)$ is a principal $\tilde{O}(n)$ bundle over $O(n)/O(n_1) \cong S^n$.

2. G discrete \implies a principal G-bundle is exactly a regular covering map with G as the group of deck transformations.

3. Frame bundles of vector-bundles are see next section.
Pullbacks and (balanced) products

Given a principal G-bundle $P \rightarrow \mathcal{B}$ and a map $f : \mathcal{B}' \rightarrow \mathcal{B}$, the pullback in the space $P' = f^*P = \mathcal{B}' \times \mathcal{B} = \mathcal{B}' \times \pi(P) ; f(x') = \pi(P)$

$$f^*P \rightarrow P$$
$$\downarrow \quad \downarrow$$
$$\mathcal{B}' \rightarrow \mathcal{B}$$

This inherits a natural structure of a principal G-bundle over \mathcal{B}'.

Remarks

1. Sections of the pullback bundle f^*P are lifts of $\{ \text{lifts of } P \}$

\[\begin{array}{c}
\mathcal{B}' \quad \mathcal{B} \\
\downarrow \quad \downarrow \\
P \quad P
\end{array} \]

2. If P is a principal G-bundle over \mathcal{B}', bundle maps $\mathcal{B}' \rightarrow f^*P$ are in one-to-one correspondence with commutative squares

\[\begin{array}{c}
\mathcal{B}' \quad \mathcal{B} \\
\downarrow \quad \downarrow \\
\mathcal{B}' \quad \mathcal{B}
\end{array} \]

which the top arrow is G-equivariant.

Remark: If we pull back P over itself we get a bundle

\[\begin{array}{c}
P \times P \rightarrow P \\
\downarrow \quad \downarrow \\
P \quad \mathcal{B}
\end{array} \]

where π' is projection on the lefthand factor and the action of G on the bundle is on the righthand factor. Then the diagonal map is a section, so this bundle is always trivial.

(This fact is of some importance in algebraic geometry.)
Recall A left G-action can always be converted to a right G-action by setting $xg = g^{-1}x$, and vice versa.

Definition If W is a right G-space and X is a left G-space, the balanced product $W 	imes_G X$ is the quotient $W 	imes X /\sim$, where \sim is the relation $((w,x) \sim (w',x'))$ if there exists $g \in G$ such that $(w,x)g = (w',x')$. The quotient by the diagonal action $(w,x)g = (w,g^{-1}x)$.

Special cases

1. $X = *$ is a point $\Rightarrow W \times * \cong W / G$.
2. $X = G$ with left translation $\Rightarrow W \times G \cong W$ homeomorphism.

If G and H are topological groups, a (G,H)-space Y is a space with a left G-action and right H-action such that the actions commute; that is, $(gy)h = g(wh)$. If Y is a (G,H)-space and X is a right G-space, then $X \times_Y Y$ is a right H-space via $(x,yh) = (x,yh)$; similarly if \tilde{z} is a right H-space for $Y \times Z$.

Exercise Let X be a right G-space, Y a (G,H)-space, and Z a left H-space. There is a natural homeomorphism $(x \times_Y Y) \times Z \cong X \times (Y \times Z)$.

Remark The tricky part is continuity of the obvious map.

So we can omit parentheses to write $y \times x \times' \times z \cong x \times' y \times z$.

Corollary 1 Suppose X is a right G-space and Y is a left H-space. For H a subgroup of G. Then $X \times_H G \times Y \cong X \times Y$.

Corollary 2 Let X be a right G-space and H be a subgroup of G. Then $X \times (G/H) \cong X / H$.

Q If \(X \to X/G \) is a principal \(G \)-bundle, is \(X \to X/H \) necessarily a principal \(H \)-bundle?

A No, let \(G = (\mathbb{R}, \times) \) acting on itself, and \(H = \mathbb{R}^+ \). \(\mathbb{R} \to \mathbb{R}/\mathbb{R}^+ \) is not locally trivial.

Para A subgroup \(H \) of \(G \) is admissible if \(G \to G/H \) is a principal \(H \)-bundle.

Para Let \(P \to B \) be a principal \(G \)-bundle, and \(H \) an admissible subgroup of \(G \). Then the quotient map \(P \to P/H \) is a principal \(H \)-bundle.

PF For any subgroup \(H \), we have \(P/H = P \times_B (G/H) \). Then \(P \to P/H \) is the bundle \(P \times_B (G/H) \). Since \(G \to G/H \) is principal we are done.

If we fix a left \(G \)-space \(W \), the map \(X \to W \times X \) is functorial.

Let \(\pi: P \to B \) be a principal \(G \)-bundle and \(F \) a left \(G \)-space. The constant map \(F \to * \) is \(G \)-equivariant, hence induces \(P \times F \to P \times * = \emptyset \).
This is a fiber bundle \(\emptyset \times F \) over \(B \) and structure group \(G \).

Exercise Any fiber bundle \(F \to B \) with structure group \(G \) can be reconstructed from a principal bundle using this operation.

Exercise This operation commutes w/ the pullback: that is, if \(F: B \to \mathcal{B} \) then there is a natural homeomorphism \(F^*(P \times F) \cong (E \times F) \times F \).

Next Time Relationship between vector bundles & principle bundles, classifying spaces.