Example For the regular representation \(R \coloneqq H[\mathfrak{g}] \), \(x_R(g) = 0 \) for \(g \neq 1 \) and \(x_R(1) = |\mathfrak{g}| \).

Lemma If \(\mathfrak{h} = \mathfrak{g} \) and \(\mathfrak{g} \) finite, for any finite dim \(\mathfrak{h} \) and \(g \in \mathfrak{g} \) we have \(x_{\mathfrak{h}}(g) = x_{\mathfrak{h}}(g^{-1}) \).

Proof We have \(x_{\mathfrak{h}}(g) \) is the sum of the eigenvalues of \(g \). Since \(g \) has finite order, every eigenvalue of \(g \) is a root of \(1 \). The eigenvalues of \(g^{1}, g^{-1} \) are the complex conjugates.

Orthogonality Let \(\mathfrak{g} \) be finite, \(\mathfrak{h} = \mathfrak{g} \).

We put a nondegenerate symmetric bilinear form on \(F(\mathfrak{g}) \) via

\[
\langle e, \psi \rangle = \frac{1}{|\mathfrak{g}|} \sum_{g \in \mathfrak{g}} \epsilon(g^{-1}) \psi(g)
\]

If \(\rho: \mathfrak{g} \to \mathfrak{gl}(V) \) is a representation, let \(V^\mathfrak{g} \) be the subspace of \(\mathfrak{g} \)-invariant vectors, i.e. \(V^\mathfrak{g} = \{ v : \rho(g)v = v \ \forall g \in \mathfrak{g} \} \).

Lemma If \(\rho: \mathfrak{g} \to \mathfrak{gl}(V) \) is a representation, \(\text{dim } V^\mathfrak{g} = \langle x_{\mathfrak{h}}, x_{\mathfrak{eIV}} \rangle \).

Proof We have \(P \in \text{End}_\mathfrak{g}(V) \) given by \(P = \frac{1}{|\mathfrak{g}|} \sum_{g \in \mathfrak{g}} \rho(g) \). Note \(P^2 = P \), \(\text{Im } P = V^\mathfrak{g} \).

So \(P \) projects onto \(V^\mathfrak{g} \). Since \(\text{char } \mathfrak{g} = 0 \), \(\text{tr } P = \text{dim } \text{Im } P = \text{dim } V^\mathfrak{g} \), but also \(\text{tr } P = \langle x_{\mathfrak{h}}, x_{\mathfrak{eIV}} \rangle \) by computation.

Corollary \(\text{dim } \text{Hom}_\mathfrak{g}(V, W) = \langle x_{\mathfrak{h}}, x_{\mathfrak{e}} \rangle \)

Proof \(\langle x_{\mathfrak{h}}, x_{\mathfrak{e}} \rangle = \frac{1}{|\mathfrak{g}|} \sum_{g \in \mathfrak{g}} x_p(g^{-1}) x_{\mathfrak{e}}(g) = \frac{1}{|\mathfrak{g}|} \sum_{g \in \mathfrak{g}} x_{\mathfrak{h} \mathfrak{e}}(g) = \langle x_{\mathfrak{h} \mathfrak{e}}, x_{\mathfrak{eIV}} \rangle \)

Since \(\text{Hom}_\mathfrak{g}(V, W) = (V^* \otimes W)^\mathfrak{g} \) we are now done.
Thm. Let ρ, σ be irreducible representations.

(a) If $\rho : G \to GL(V)$ and $\sigma : G \to GL(W)$ are not isomorphic, $\langle \chi_\rho, \chi_\sigma \rangle = 0$.
(b) If ρ and σ are equivalent, $\langle \chi_\rho, \chi_\sigma \rangle = 1$.

Proof. Schur's Lemma $\Rightarrow \text{Hom}_G(V, W) = 0$.

(i) $\langle \chi_\rho, \chi_\sigma \rangle = \dim \text{Hom}_G(V, W) = \dim(\sigma) = 1$.

Corollary. Let $\rho = \rho_1 \oplus \cdots \oplus \rho_r$ be a decomposition into a sum of irreducible representations, where $\rho_i \cong \rho_i$ is the direct sum of m_i copies of ρ_i. Then $m_i = \frac{\langle \chi_{\rho_i}, \chi_{\rho_i} \rangle}{\langle \chi_\rho, \chi_\rho \rangle}$. We say $V_i \cong \rho_i$ are the isotypic components of ρ.

Corollary. Two finite-dimensional representations ρ and σ are equivalent if their characters coincide.

Corollary. A representation ρ is irreducible $\iff \langle \chi_\rho, \chi_\rho \rangle = 1$.

Thm. Every irreducible representation ρ of G appears in the regular representation with multiplicity $\dim \rho$.

Proof. $\langle \chi_\rho, \chi_R \rangle = \frac{1}{|G|} \chi_\rho(1) \chi_R(1) = \dim \rho$.

Corollary. Let ρ_1, \ldots, ρ_r be the irreducible representations of G and $n_i = \dim \rho_i$.

Then $n_1^2 + \cdots + n_r^2 = |G|.

Proof. $\dim R = |G| = \chi_R(1) = \sum_{i=1}^r n_i \chi_{\rho_i}(1) = \sum_{i=1}^r n_i^2$.
The number of representations of a finite group

Def. Let \(C(G) = \{ \varphi \in \text{F}(G) : \varphi(gh^{-1}) = \varphi(h)^2 \} \) be the class-functions.

Exercise. \(<,>\) restricts to a nondegenerate form on \(C(G) \).

Thm. The characters of the irreducible representations on \(G \) form an orthonormal basis of \(C(G) \).

PF. We say that if \(\varphi \in C(G) \) and \(\langle \varphi, \chi_p \rangle = 0 \) for any irreducible representation \(p \), then \(\varphi = 0 \).

Claim. Let \(p : G \to GL(V) \) be a representation, \(\varphi \in C(G) \) and

\[
T = \frac{1}{|G|} \sum_{g \in G} \varphi(g^{-1}) p_g
\]

Then \(T \in \text{End}_G V \) and \(\text{tr} T = \langle \varphi, \chi_p \rangle \).

This is an exercise. Then for \(p \) irreducible we have that

\[
\frac{1}{|G|} \sum_{g \in G} \varphi(g^{-1}) p_g = 0
\]

But any representation is a direct sum of irreducibles, so this is true of any representation. In particular for the regular representation \(R \) we have

\[
\frac{1}{|G|} \sum_{g \in G} \varphi(g^{-1}) R_g(1) = \frac{1}{|G|} \sum_{g \in G} \varphi(g^{-1}) = 0
\]

Hence \(\varphi(g^{-1}) = 0 \) for all \(g \in G \), i.e. \(\varphi = 0 \). \(\Box \)
Corollary 1. The number of isomorphism classes of irreducible representations is the number of conjugacy reps of G.

Corollary 2. If G is a finite abelian group, every irreducible representation is one-dimensional and the number of irreducible representations is $|G|$.

Remark 1. If G^* is the set of one-dim'l irreducible representations of G, we have

- G^* is a group under \otimes
- $G^* \cong (G/[G,G])^*$ since $\rho: G \to GL(C) = C^*$

Example: $S_n /[S_n, S_n] / A_n \to C^*$ has two maps to C^*, the trivial rep and the sign rep.
Example S_3 over C

\[
\begin{array}{ccc}
V_1 & 1 & 3 & 2 \\
\chi_1 & 1 & 1 & 1 \\
\chi_2 & 1 & -1 & 1 \\
\chi_3 & 2 & 0 & -1 \\
\end{array}
\]

Exercise. For V an irrep, $V \otimes V$ contains $V_0 \Rightarrow V$ is self-dual.

S_4 over C

\[
\begin{array}{cccccc}
1 & 3 & 5 & 6 & 8 & 9 \\
(1) & (12) & (123) & (1234) & (1234) & (1234) \\
\chi_1 & 1 & 1 & 1 & 1 & 1 \\
\chi_2 & 1 & 1 & 1 & -1 & -1 \\
\chi_3 & 3 & 0 & 0 & -1 & -1 \\
\chi_4 & 3 & -1 & 0 & -1 & 1 \\
\chi_5 & 2 & 0 & -1 & 2 & 0 \\
\end{array}
\]

We can use

\[x_{\text{perm}} = x_1 + x_3\]

\[w = \frac{1}{6} \sum_{i,j} \chi_i(x) \chi_j(x) \Rightarrow x + yz = 0\]

\[x_{\text{perm}}((1)) = 3\]

\[x_{\text{perm}}((12)) = 1\]

\[x_{\text{perm}}((123)) = 0\]

\[V_1 \otimes V_2 = V_1\]

\[V_2 \otimes V_3 = V_3\] Tensoring w/ a 1-dim'l irrep is invertible.

\[V_3 \otimes V_3 = V_1 \otimes V_2 \otimes V_3 \triangleleft 4 \oplus 1 (1)\]

\[x_{\text{perm}} = x_1 + x_3\]

\[P_2 \otimes P_3\] is also irreducible.

\[x_{\text{S}}\] can now be produced from orthogonality.

\[
\begin{align*}
2 + 6a + 8b + 3c + 4d &= 0 \\
8b + 3c + 2d &= 0 \\
2 - 6a + 8b + 3c - 6d &= 0 \\
a + d &= 0 \\
6 + 6a - 3c - 6d &= 0 \\
6 - 6a - 3c + 6d &= 0 \\
a - d &= 0
\end{align*}
\]

We can consider the ring $\text{Rep}(G)$ w/ basis $[V_1], \ldots, [V_6]$.

The irreps over C w/ $[V_i] \ast [V_j] = [V_i \otimes V_j]$ and $[V_i] \ast [V_j] = [V_i \otimes V_j]$.

We have structure constants a_{ij}^k s.t. $V_i \otimes V_j = \bigoplus V_k a_{ij}^k$ given by $x_i x_j = \sum a_{ij}^k x_k$.
Module rephrasing

* Recall a representation \(\rho \) of \(G \) is equivalently a module over \(\mathbb{K}[G] \).

 * An irreducible representation is a simple module (no nonzero proper submodules). A representation that can be decomposed into a direct sum of irreducibles corresponds to a semisimple module (can be decomposed into a direct sum of simples).

 * \(\mathbb{K}[G] \) is a semisimple ring (= "semisimple as a module over itself") \(\implies \) every representation of \(G \) over \(\mathbb{K} \) decomposes into a direct sum of irreducibles.

 \(\implies \) \(\mathbb{K}[G] \) semisimple for \(G \) finite.

In this formulation **Schur's Lemma** let \(M \) and \(N \) be simple \(R \)-modules. If \(\text{Hom}_R(M,N) \) is not zero then it is an isomorphism. If \(M \) is a simple module, then \(\text{End}_R(M) \) is a division ring.

The structure of the group algebra: product of matrix rings

* Recall given a ring \(R \), one has the ring \(R^\text{op} \) w/ the same abelian group structure and multiplication \(a \circ b = ba \).

Lemma The ring \(\text{End}_R(R) \) is isomorphic to \(R^\text{op} \).

PF Given \(a \in R \), we let \(E_a(x) = xa \). Then \(E_a \in \text{End}_R(R) \) and \(E_a \circ E_b = E_a \circ E_b \). This constructs a homomorphism \(\Phi: R^\text{op} \rightarrow \text{End}_R(R) \). It is straightforward to check it is an isomorphism.
Lemma Let $p_i : G \to GL(V)$, $i = 1, \ldots, r$ be distinct irreducible representations of a finite group over an algebraically closed field. Let $V = V_{\otimes m_1} \oplus \cdots \oplus V_{\otimes m_r}$.

Then $End_G(V) \cong M_{m_1}(k) \times \cdots \times M_{m_r}(k)$, where $M_n(k)$ denotes the ring of $n \times n$ matrices.

Proof If $\phi \in End_G(V)$, Schur's Lemma implies that ϕ preserves isotypic components. So we have an isomorphism $End_G(V) \cong End_G(V_{\otimes m_1}) \times \cdots \times End_G(V_{\otimes m_r})$.

So it suffices to check that for W a simple $k[G]$-module, $End_G(W^{\otimes m})$ is isomorphic to $M_{m_1}(k)$.

Proof For $i = 1, \ldots, m$ let p_i be the projection of $W^{\otimes m}$ onto its ith factor, ϕ_i the inclusion map on the ith factor. Let $\phi \in End_G(W^{\otimes m})$. Let ϕ_i be the composition $W \xrightarrow{\phi_i} W^{\otimes m} \xrightarrow{\phi_i} W^{\otimes m} \xrightarrow{\phi_i} W$. By Schur's Lemma, $\phi_i = c_{ij} \text{Id}_W$ for some $c_{ij} \in k$. Hence there is a map $\tilde{\phi} : End(W^{\otimes m}) \to M_{m_1}(k)$, plainly injective and surjective by construction. For homomorphism, note we can write $\phi = \sum_{i,j} c_{ij} \phi_i$ so $\phi = \sum_{i,j} c_{ij} \phi_i$. Thus we see that $\phi \circ \psi = \sum_{i,j} c_{ij} \phi_i \circ \psi_i$.

Prop If G finite and k algebraically closed, $k[G] \cong M_{n_1}(k) \times \cdots \times M_{n_r}(k)$ where n_1, \ldots, n_r are the dimensions of the distinct irreducible representations.

Proof $End(k[G]) \cong k[G]^\text{op}$. But $g \mapsto g^{-1}$ induces an isomorphism $k[G]^\text{op} \cong k[G]$.

$\therefore k[G] \cong End(k[G]) \cong End(V_{\otimes n_1} \oplus \cdots \oplus V_{\otimes n_r}) \cong M_{n_1}(k) \times \cdots \times M_{n_r}(k)$.