Math 540: Exercises for Week 3

Reading: Hatcher Section 1.1-2

- 1. Hatcher 1.1.1
- 2. Hatcher 1.1.5
- $3. \ {\rm Hatcher} \ 1.1.7$
- 4. Hatcher 1.1.9
- 5. Hatcher 1.1.10
- 6. Let G be a path-connected topological group. Let $f: I \to G$ and $g: I \to G$ be two loops in G based at the identity. Observe that there are two natural notions of the product of f and g: the composition $f \cdot g$ defined in class, and the pointwise product fg(s) = f(s)g(s). Prove that these notions agree up to homotopy of loops. Use this to show the fundamental group of a topological group is always abelian.
- 7. Let $H^1(X) = [X, S^1]$ be the set of homotopy classes of continuous maps from X to the circle. (No basepoints involved.)
 - (a) Remember that S^1 has the structure of a topological group. Use this to give $H^1(X)$ the structure of an abelian group.
 - (b) What is $H^1({\text{pt}})$?
 - (c) What is $H^1(S^1)$? (Use what you know about $\pi_1(S^1)$.)
 - (d) Show that H^1 is functorial in the following sense: Given $f: X \to Y$ a continuous map, there is an induced map $f^*: H^1(Y) \to H^1(X)$. Moreover if $g: Y \to Z$ then $(g \circ f)^* = f^* \circ g^*$ as maps $H^1(Z) \to H^1(X)$.
 - (e) Show that if f and h are homotopic as maps $X \to Y$ then $f^* = h^*$. Conclude that if $X \simeq Y$ then $H^1(X) \simeq H^1(Y)$.
 - (f) Use H^1 to prove there is no retraction $D^2 \to S^1$, giving yet another proof of the Brouwer fixed point theorem.