Instructions: You have 50 minutes to complete the exam. There are five problems, worth a total of fifty points. You may not use any books, notes, or calculators. Show all your work; partial credit will be given for progress toward correct solutions, but unsupported correct answers will not receive credit. Remember to make your drawings large and clear, and to label your axes.

Write your solutions in the space below the questions. If you need more space, use the back of the page. Do not turn in your scratch paper.

Name: ____________________________

UID: _____________________________

Section: ____________________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1.
Consider a cylinder of radius 2 and height 4 with mass density e^{-z}, where z is the height above the base.

(a) [5pts.] What is the mass of the cylinder?
(b) [5pts.] Where does the center of mass of the cylinder lie?
Problem 2.
Consider the map

\[G(u, v) = \left(\frac{u + v}{2}, \frac{u - v}{2} \right) \]

which maps into the \(xy \)-plane.

(a) [5pts.] Find a domain in the \(uv \)-plane which maps to the diamond-shaped region \(D \) cut out by the four lines shown in the \(xy \)-plane.

(b) [5pts.] Use your answer from part (a) to evaluate the integral

\[\int \int_D \left((x - y) \sin \left(\frac{\pi}{2} (x + y) \right) \right)^2 \, dxdy \]
Problem 3.

Calculate the following.

(a) [5pts.] The total electric charge on a piecewise linear wire running from \((0, 0, 1)\) to \((1, 1, 1)\) to \((1, 0, 0)\) with charge density \(\delta(x, y, z) = x(y^2 - z)\).

(b) [5pts.] The work done by a vector field \(\mathbf{F}(x, y, z) = \langle e^x, e^y, xyz \rangle\) in moving an object from \((0, 0, 0)\) to \((1, 1, \frac{1}{2})\) along the path \(\mathbf{r}(t) = \langle t^2, t, \frac{t}{2} \rangle\).
Consider the vector field \(\mathbf{F} \) and the oriented curve \(C \), oriented counterclockwise, shown below.

(a) [5pts.] Decide whether \(\int_C \mathbf{F} \cdot d\mathbf{r} \) is positive, negative, or zero. Justify your answer.
(b) [5pts.] Decide whether \(\mathbf{F} \) is conservative. Justify your answer.
Problem 5.

Consider the vector field \(\mathbf{F}(x, y, z) = \langle \cos(z), 2y, -x \sin(z) \rangle \)

(a) [3pts.] Which of the following is a picture of \(\mathbf{F} \)? (You do not need to justify your answer, and no partial credit will be given for this problem.)

![Picture of vector field](image)

(b) [3pts.] Find \(\text{div}(\mathbf{F}) \) and \(\text{curl}(\mathbf{F}) \).

(c) [4pts.] What is the integral of \(\mathbf{F} \) over the path \(\mathbf{r}(t) = \langle t^7, \sin(2\pi t) - 4, e^{t^2} \rangle \) for \(t \in [0, 1] \)?