Math 311H
 Honors Introduction to Real Analysis

Quiz

Instructions: You have 30 minutes to complete the quiz. There are three questions, worth a total of fifteen points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name: \qquad

RUID: \qquad

Question	Points	Score
1	5	
2	5	
3	5	
Total:	15	

1. For $n \in \mathbb{N}$, let P_{n} be the statement " $n^{2}+5 n+1$ is an even number".
(a) [3pts.] Prove that if P_{n} is true, then P_{n+1} is true.

Solution: Assume P_{n} is true, such that $n^{2}+5 n+1$ is even. Say it is equal to $2 k$ for some $k \in \mathbb{N}$. Then we have that

$$
\begin{aligned}
(n+1)^{2}+5(n+1)+1 & =\left(n^{2}+2 n+1\right)+5 n+5+1 \\
& =\left(n^{2}+5 n+1\right)+2 n+6 \\
& =2 k+2 n+6 \\
& =2(k+n+3)
\end{aligned}
$$

Ergo we see that $(n+1)^{2}+5(n+1)+1$ is even, so P_{n+1} is true.
(b) [1pts.] For which n is P_{n} true?

Solution: None at all. For if n is even, then n^{2} and $5 n$ are also even, so $n^{2}+5 n+1$ is odd. But if n is odd, then n^{2} and $5 n$ are odd, so $n^{2}+5 n$ is even, so $n^{2}+5 n+1$ is odd.
(c) [1pts.] How do you reconcile parts (a) and (b)?

Solution: At no point did we prove a base case for an inductive proof, only an inductive step.
2. (a) [4pts.] Let A and B be two nonempty bounded subsets of \mathbb{R}. Prove the equality $\sup (A \cup B)=\max \{\sup A, \sup B\}$.

Solution: Let $s=\sup A$ and $t=\sup B$. Up to relabeling we may assume $s \leq t$. We wish to show that $t=\sup (A \cup B)$. First, we claim t is an upper bound for $A \cup B$. For if $b \in B$, then by assumption t is an upper bound for B, so $b \leq t$, and if $a \in A$, then by assumption s is an upper bound for A, and $a<s \leq t$. So since any $x \in A \cup B$ has one of $x \in A$ or $x \in B$, we have $x \leq t$, so t is an upper bound for $A \cup B$. Now let u be any upper bound for $A \cup B$. Then since for all $b \in B$ we have $b \in A \cup B$, it follows that $b \leq u$, so u is also an upper bound for B. By assumption $t \leq u$. So, since t is an upper bound for $A \cup B$ and is less than or equal to any lower bound for $A \cup B$, we must have $t=\sup (A \cup B)$ as desired.
(b) [1pts.] Give an example to show that it is not necessarily true that $\sup (A \cap B)=$ $\min \{\sup A, \sup B\}$. Note that your example should have nonempty intersection.

Solution: Let $A=\{0,1\}$ and $B=\{0,2\}$, so that $\sup A=1$ and $\sup B=2$ but $\sup (A \cap B)=\sup (\{0\})=0$.
3. [5pts.] Recall that the product of two sets A and B is $A \times B=\{(a, b): a \in A, b \in B\}$. Prove that the product of two countable sets is countable.

Solution: Let $f: \mathbb{N} \rightarrow A$ and $g: \mathbb{N} \rightarrow B$ be bijections. Let $f(n)=a_{n}$ and $g(n)=b_{n}$ so that $A=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots\right\}$. We may construct a bijection $h: \mathbb{N} \rightarrow A \times B$ by making a grid of elements $\left(a_{i}, b_{j}\right)$ and listing the elements along the diagonals, obtaining

$$
\left(a_{1}, b_{1}\right),\left(a_{2}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{3}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{1}, b_{3}\right), \ldots
$$

as the resulting list of elements, which is enough to define the map h.

