Math 311H
 Honors Introduction to Real Analysis
 Midterm 2

Instructions: You have 80 minutes to complete the exam. There are six questions, worth a total of thirty points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name:

Question	Points	Score
1	5	
2	5	
3	4	
4	6	
5	5	
6	5	
Total:	30	

1. For each of the following things, either give an example of the described object (no need to justify it) or write a sentence saying why this is impossible.
(a) [1pts.] A nonempty perfect set consisting only of rational numbers.

Solution: Impossible; perfect sets are always uncountable.
(b) [1pts.] A connected set consisting of only nonzero numbers.

Solution: Consider (1,2).
(c) [1pts.] A function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous at 0 and no other point.

Solution: Consider

$$
h(x)= \begin{cases}x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} .\end{cases}
$$

(d) [1pts.] A continuous function $f:[a, b] \rightarrow \mathbb{R}$ and a Cauchy sequence $\left(s_{n}\right)$ of elements in $[a, b]$ such that $\left(f\left(s_{n}\right)\right)$ is not Cauchy.

Solution: Impossible; continuous functions on compact sets are uniformly continuous, and the image of a Cauchy sequence under a uniformly continuous function is Cauchy.
(e) $[1 \mathrm{pts}]$.A closed set E for which $E^{\circ} \neq 0$ and $\overline{\left(E^{\circ}\right)} \neq E$.

Solution: Consider $E=[0,1] \cup\{2\}$, so that $E^{\circ}=(0,1)$ and $\overline{\left(E^{\circ}\right)}=[0,1]$.
2. (a) [3pts.] Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Prove that if $g(r)=0$ for all points $r \in \mathbb{Q}$, then in fact $g(x)=0$ for all $x \in \mathbb{R}$.

Solution: For any $x \in \mathbb{R}$, pick a sequence of rational numbers $r_{n} \rightarrow x$. Then by continuity of g, we have $g\left(r_{n}\right) \rightarrow g(x)$. But $g\left(r_{n}\right)=0$ for all n, implying that in fact $g(x)=0$.
(b) [2pts.] Prove that it follows that if $f, h: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and $f(r)=h(r)$ for all rational numbers, then $f(x)=h(x)$ for all $x \in \mathbb{R}$.

Solution: We may set $g=f-h$ and apply part (a).
3. [4pts.] (The Squeeze Theorem for Limits of Functions) Let f, g, h be functions with the same domain A and let $f(x) \leq g(x) \leq h(x)$ for all $x \in A$. If $\lim _{x \rightarrow c} f(x)=L=$ $\lim _{x \rightarrow c} h(x)$ for c some limit point of A, prove that $\lim _{x \rightarrow c} g(x)=L$ as well.

Solution: Let $\left(x_{n}\right)$ be a sequence of points in A converging to c such that $x_{n} \neq c$ for any n. Since $\lim _{x \rightarrow c} f(x)=L=\lim _{x \rightarrow c} h(x)$, we have that $f\left(x_{n}\right) \rightarrow L$ and $h\left(x_{n}\right) \rightarrow L$. However, since $f\left(x_{n}\right) \leq g\left(x_{n}\right) \leq h\left(x_{n}\right)$, we see that by the Squeeze Theorem for sequences, the sequence $\left(g\left(x_{n}\right)\right)$ also converges to L. As $\left(x_{n}\right)$ was arbitrary, $\lim _{x \rightarrow c} g(x)=L$.
4. For each of the following pairs of sets, either give an example of a continuous function $f: A \rightarrow \mathbb{R}$ whose image is $f(A)=B$ (no need to justify your answer) or explain why no such function exists.
(a) $[2 \mathrm{pts}] A=.(0, \infty) ; B=[1,2]$.

Solution: This is possible, let

$$
f(x)= \begin{cases}1 & x<1 \\ x & 1 \leq x \leq 2 \\ 2 & x>2\end{cases}
$$

(b) [2pts.] $A=(0,1) \cup(2,3) ; B=(0,1) \cup(2,3) \cup(4,5]$.

Solution: Impossible. By the Intermediate Value Theorem, the image of an interval under a continuous function is an interval, implying that each of $f((0,1))$ and $f((2,3))$ are contained in one of the three intervals in B. This leaves an interval in B outside the image of f.
(c) $[2$ pts. $] A$ is the Cantor set; $B=[0,1) \cup(2,3]$.

Solution: Impossible; A is compact and B is not.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly continuous on \mathbb{R}.
(a) [2pts.] Prove or disprove: $h(x)=f(x)+g(x)$ is uniformly continuous on \mathbb{R}.

Solution: True. Let $\epsilon>0$, then there exists $\delta_{1}>0$ such that $|x-y|<\delta_{1}$ implies that $|f(x)-f(y)|<\frac{\epsilon}{2}$, and there exists $\delta_{2}>0$ such that $|x-y|<\delta_{2}$
implies that $|g(x)-g(y)|<\frac{\epsilon}{2}$. Ergo if $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, we have that $|x-y|<\delta$ implies that

$$
\begin{aligned}
|h(x)-h(y)| & =|f(x)+g(x)-(f(y)+g(y))| \\
& \leq|f(x)-f(y)|+|g(x)-g(y)| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

As $\epsilon>0$ was arbitary, $h(x)$ is uniformly continuous on \mathbb{R}.
(b) [3pts.] Prove or disprove: $k(x)=f(x) g(x)$ is uniformly continuous on \mathbb{R}.

Solution: False; the function $f(x)=x$ is trivially uniformly continuous on \mathbb{R}, but from class $[f(x)]^{2}=x^{2}$ is not.
6. A continuous map $f: \mathbb{R} \rightarrow \mathbb{R}$ is called proper if the preimage $f^{-1}(K)=K$ of every compact set is a compact set.
(a) [1pts.] Give an example of a map $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not proper.

Solution: Consider the constant function $f(x) \equiv 0$, such that $f^{-1}(0)=\mathbb{R}$.
(b) [2pts.] Prove that the image of a proper map $f: \mathbb{R} \rightarrow \mathbb{R}$ is necessarily unbounded.

Solution: Suppose not, that is, suppose that $f(\mathbb{R})$ is bounded. Then $f(\mathbb{R})$ is contained in some closed interval K. We see that $f^{-1}(K)=\mathbb{R}$, but f was proper, so we have a contradiction. We conclude $f(\mathbb{R})$ is unbounded.
(c) [2pts.] Give an example of a map $f: \mathbb{R} \rightarrow \mathbb{R}$ which is proper and whose image is not all of \mathbb{R}.

Solution: Consider $f(x)=|x|$, which has image the nonnegative real numbers. Let K be compact. Then K is bounded, which is to say that there exists M such that for $x \in K$, we have $|x|<M$. This clearly implies that $f^{-1}(K)=\{x$: $|x| \in K\}$ is also bounded by M. Moreover, K is closed. By continuity of f, we see that $f^{-1}(K)$ is also closed. Ergo, $f^{-1}(K)$ is compact. As K was arbitrary, f is proper.

