Math 311H Honors Introduction to Real Analysis

Sample Midterm 2

Instructions: You have 80 minutes to complete the exam. There are six questions, worth a total of thirty points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name: _____

Question	Points	Score
1	5	
2	5	
3	4	
4	5	
5	6	
6	5	
Total:	30	

- 1. For each of the following things, either give an example of the described object (no need to justify it) or write a sentence saying why this is impossible.
 - (a) [1pts.] A perfect set with exactly three limit points.

Solution: Impossible; every point of a perfect set is a limit point and perfect sets are always uncountable.

(b) [1pts.] A set E with $E^{\circ} = \emptyset$ and $\overline{E} = \mathbb{R}$.

Solution: Consider \mathbb{Q} .

(c) [1pts.] A connected set consisting of only irrational numbers.

Solution: Consider $\{\sqrt{2}\}$.

(d) [1pts.] A noncompact set A and an open cover of A which has a finite subcover.

Solution: Let A = (0, 1) and consider the open cover $\{A\}$, which is already finite.

(e) [1pts.] A continuous surjective function from the Cantor set to the interval [0, 1].

Solution: Recall that the Cantor set consists of all numbers in [0, 1] with decimal expansions in base three containing only 0 and 2 as digits. The map is division by two and reinterpretation as an expansion in base two (so that $\frac{1}{3} \mapsto \frac{1}{2}$ and so on).

2. [5pts.] Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and $E \subseteq R$. Prove that $f(\overline{E}) \subseteq \overline{f(E)}$.

Solution: Since the closure of any set is closed and the preimage of a closed set under a continuous function is closed, we have that $f^{-1}(\overline{f(E)})$ is closed. Moreover, since if $x \in E$, we have $f(x) \subset f(E) \subset \overline{f(E)}$, so $x \in f^{-1}(\overline{f(E)})$. Hence $E \subset f^{-1}(\overline{f(E)})$. But \overline{E} is the smallest closed set containing E, so this implies that $\overline{E} \subset f^{-1}(\overline{f(E)})$. Ergo $f(\overline{E}) \subseteq \overline{f(E)}$. A direct argument involving checking that any limit point of Eis sent to either a point of f(E) or a limit point of f(E) is also possible.

3. [4pts.] Suppose that f, g are two functions with the same domain A such that $f(x) \leq g(x)$ for all $x \in A$, and say that $\lim_{x\to c} f(x) = L_1$ and $\lim_{x\to c} L_2$ both exist for some limit point c of A. Prove that $L_1 \leq L_2$.

Solution: Let (x_n) be a sequence of points in A such that $x_n \to c$ but $x_n \neq c$ for any n. Then $f(x_n) \to L_1$ and $g(x_n) \to L_2$ by the sequential criterion for limits. However, $f(x_n) \leq g(x_n)$ for all n, so by the Order Limit Theorem for sequences, we must have that $L_1 \leq L_2$.

4. [5pts.] Let f be uniformly continuous on a bounded set A. Prove that the image f(A) is also bounded.

Solution: Suppose not, then there is a sequence of points (y_n) in f(A) such that $|y_n| > n$ for all $n \in \mathbb{N}$. Now, since $y_n \in f(A)$, there is some $x_n \in A$ such that $f(x_n) = y_n$. The sequence (x_n) is bounded, hence by Bolzano-Weierstrass it has a subsequence (x_{n_k}) which converges in \mathbb{R} and in particular is Cauchy. But since f is uniformly continuous, the sequence $(f(x_{n_k})) = (y_{n_k})$ should be Cauchy as well, and in particular bounded. This is a contradiction since $y_{n_k} > n_k$ for all n_k .

- 5. For each of the following pairs of sets, either give an example of a continuous function $f: A \to \mathbb{R}$ whose image is f(A) = B (no need to justify your answer) or explain why no such function exists.
 - (a) [2pts.] A = [0, 1]; B = [1, 2)

Solution: Impossible; A is compact and B is not.

(b) [2pts.] $A = (0, 1]; B = [1, \infty)$

Solution: Possible; consider $f(x) = \frac{1}{x}$.

(c) [2pts.] $A = (0, 1); B = (0, 1) \cup (3, 4)$

Solution: Impossible; A is connected and B is not.

- 6. A map $f : \mathbb{R} \to \mathbb{R}$ is called *open* if for every $O \subset \mathbb{R}$ an open set, the image f(O) is also open.
 - (a) [1pts.] Give an example of a continuous function $f \colon \mathbb{R} \to \mathbb{R}$ which is not open, including an open set O such that f(O) is not open.

Solution: Consider f(x) = |x|, which has the property that f((-1, 1)) = [0, 1).

(b) [4pts.] Prove that any open continuous map f is strictly monotone. [Hint: For any a < b in \mathbb{R} , where must the minimum and maximum values of f on [a, b] lie?]

Solution: Let $a \in \mathbb{R}$, and consider any b such that a < b. We see that f([a, b]) is a compact connected set, hence either a closed interval or a point; since f((a, b)) is open, we in fact have that f([a, b]) is a closed interval [c, d] and that c and d are not in the image f((a, b)), so they must be the image of a and b in some order. In particular, the maximum and minimum values of f on a closed interval occur at the endpoints.

We now have two cases. Suppose that f(a) = c and f(b) = d, so that f(a) < f(b). In this case, if a < x < b, then $f(x) \in (c, d)$, which implies that f(a) < f(x), and if a < b < y, then the same argument shows that a and y map to the endpoints of an interval which contains f(b), so a must also be the left-hand endpoint of that interval. Hence f(a) < f(y). So we see that f(a) < f(x) for all x > a. If we instead assumed that f(a) = d and f(b) = c, we would have gotten f(a) > f(x) for all x > a. So one of these things is true for every $a \in \mathbb{R}$. We will now show that it must be the same condition for every a.

Now, suppose we have an a in \mathbb{R} with the property that f(a) < f(x) for all x > a and an a' in \mathbb{R} with the property that f(a') > f(x) for all x > a'. Then suppose a < a', and x > a'. Then we should have f(a) < f(a') and f(a) < f(x), but also we should have f(a') > f(x). So, in particular, f([a, x]) does not take its maximum at either a or x, contradicting openness. Hence, we only get points of one type, so f is strictly monotone.

Remark: The corresponding problem on the actual exam is easier than this one.