Math 311H
 Honors Introduction to Real Analysis
 Sample Midterm 2

Instructions: You have 80 minutes to complete the exam. There are six questions, worth a total of thirty points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name:

Question	Points	Score
1	5	
2	5	
3	4	
4	5	
5	6	
6	5	
Total:	30	

1. For each of the following things, either give an example of the described object (no need to justify it) or write a sentence saying why this is impossible.
(a) [1pts.] A perfect set with exactly three limit points.

Solution: Impossible; every point of a perfect set is a limit point and perfect sets are always uncountable.
(b) $[1$ pts. $]$ A set E with $E^{\circ}=\emptyset$ and $\bar{E}=\mathbb{R}$.

Solution: Consider \mathbb{Q}.
(c) [1pts.] A connected set consisting of only irrational numbers.

Solution: Consider $\{\sqrt{2}\}$.
(d) [1pts.] A noncompact set A and an open cover of A which has a finite subcover.

Solution: Let $A=(0,1)$ and consider the open cover $\{A\}$, which is already finite.
(e) [1pts.] A continuous surjective function from the Cantor set to the interval $[0,1]$.

Solution: Recall that the Cantor set consists of all numbers in $[0,1]$ with decimal expansions in base three containing only 0 and 2 as digits. The map is division by two and reinterpretation as an expansion in base two (so that $\frac{1}{3} \mapsto \frac{1}{2}$ and so on).
2. [5pts.] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and $E \subseteq R$. Prove that $f(\bar{E}) \subseteq \overline{f(E)}$.

Solution: Since the closure of any set is closed and the preimage of a closed set under a continuous function is closed, we have that $f^{-1}(\overline{f(E)})$ is closed. Moreover, since if $x \in E$, we have $f(x) \subset f(E) \subset \overline{f(E)}$, so $x \in f^{-1}(\overline{f(E)})$. Hence $E \subset f^{-1}(\overline{f(E)})$. But \bar{E} is the smallest closed set containing E, so this implies that $\bar{E} \subset f^{-1}(\overline{f(E)})$. Ergo $f(\bar{E}) \subseteq \overline{f(E)}$. A direct argument involving checking that any limit point of E is sent to either a point of $f(E)$ or a limit point of $f(E)$ is also possible.
3. [4pts.] Suppose that f, g are two functions with the same domain A such that $f(x) \leq$ $g(x)$ for all $x \in A$, and say that $\lim _{x \rightarrow c} f(x)=L_{1}$ and $\lim _{x \rightarrow c} L_{2}$ both exist for some limit point c of A. Prove that $L_{1} \leq L_{2}$.

Solution: Let $\left(x_{n}\right)$ be a sequence of points in A such that $x_{n} \rightarrow c$ but $x_{n} \neq c$ for any n. Then $f\left(x_{n}\right) \rightarrow L_{1}$ and $g\left(x_{n}\right) \rightarrow L_{2}$ by the sequential criterion for limits. However, $f\left(x_{n}\right) \leq g\left(x_{n}\right)$ for all n, so by the Order Limit Theorem for sequences, we must have that $L_{1} \leq L_{2}$.
4. [5pts.] Let f be uniformly continuous on a bounded set A. Prove that the image $f(A)$ is also bounded.

Solution: Suppose not, then there is a sequence of points $\left(y_{n}\right)$ in $f(A)$ such that $\left|y_{n}\right|>n$ for all $n \in \mathbb{N}$. Now, since $y_{n} \in f(A)$, there is some $x_{n} \in A$ such that $f\left(x_{n}\right)=y_{n}$. The sequence $\left(x_{n}\right)$ is bounded, hence by Bolzano-Weierstrass it has a subsequence $\left(x_{n_{k}}\right)$ which converges in \mathbb{R} and in particular is Cauchy. But since f is uniformly continuous, the sequence $\left(f\left(x_{n_{k}}\right)\right)=\left(y_{n_{k}}\right)$ should be Cauchy as well, and in particular bounded. This is a contradiction since $y_{n_{k}}>n_{k}$ for all n_{k}.
5. For each of the following pairs of sets, either give an example of a continuous function $f: A \rightarrow \mathbb{R}$ whose image is $f(A)=B$ (no need to justify your answer) or explain why no such function exists.
(a) $[2 \mathrm{pts}] ~ A=.[0,1] ; B=[1,2)$

Solution: Impossible; A is compact and B is not.
(b) $[2$ pts. $] ~ A=(0,1] ; B=[1, \infty)$

Solution: Possible; consider $f(x)=\frac{1}{x}$.
(c) $[2$ pts. $] ~ A=(0,1) ; B=(0,1) \cup(3,4)$

Solution: Impossible; A is connected and B is not.
6. A map $f: \mathbb{R} \rightarrow \mathbb{R}$ is called open if for every $O \subset \mathbb{R}$ an open set, the image $f(O)$ is also open.
(a) [1pts.] Give an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not open, including an open set O such that $f(O)$ is not open.

Solution: Consider $f(x)=|x|$, which has the property that $f((-1,1))=[0,1)$.
(b) [4pts.] Prove that any open continuous map f is strictly monotone. [Hint: For any $a<b$ in \mathbb{R}, where must the minimum and maximum values of f on $[a, b]$ lie?]

Solution: Let $a \in \mathbb{R}$, and consider any b such that $a<b$. We see that $f([a, b])$ is a compact connected set, hence either a closed interval or a point; since $f((a, b))$ is open, we in fact have that $f([a, b])$ is a closed interval $[c, d]$ and that c and d are not in the image $f((a, b))$, so they must be the image of a and b in some order. In particular, the maximum and minimum values of f on a closed interval occur at the endpoints.
We now have two cases. Suppose that $f(a)=c$ and $f(b)=d$, so that $f(a)<$ $f(b)$. In this case, if $a<x<b$, then $f(x) \in(c, d)$, which implies that $f(a)<$ $f(x)$, and if $a<b<y$, then the same argument shows that a and y map to the endpoints of an interval which contains $f(b)$, so a must also be the left-hand endpoint of that interval. Hence $f(a)<f(y)$. So we see that $f(a)<f(x)$ for all $x>a$. If we instead assumed that $f(a)=d$ and $f(b)=c$, we would have gotten $f(a)>f(x)$ for all $x>a$. So one of these things is true for every $a \in \mathbb{R}$. We will now show that it must be the same condition for every a.
Now, suppose we have an a in \mathbb{R} with the property that $f(a)<f(x)$ for all $x>a$ and an a^{\prime} in \mathbb{R} with the property that $f\left(a^{\prime}\right)>f(x)$ for all $x>a^{\prime}$. Then suppose $a<a^{\prime}$, and $x>a^{\prime}$. Then we should have $f(a)<f\left(a^{\prime}\right)$ and $f(a)<f(x)$, but also we should have $f\left(a^{\prime}\right)>f(x)$. So, in particular, $f([a, x])$ does not take its maximum at either a or x, contradicting openness. Hence, we only get points of one type, so f is strictly monotone.
Remark: The corresponding problem on the actual exam is easier than this one.

