## Math 311H <br> Honors Introduction to Real Analysis <br> Sample Midterm 2

Instructions: You have 80 minutes to complete the exam. There are six questions, worth a total of thirty points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name:

| Question | Points | Score |
| :---: | :---: | :---: |
| 1 | 5 |  |
| 2 | 5 |  |
| 3 | 4 |  |
| 4 | 5 |  |
| 5 | 6 |  |
| 6 | 5 |  |
| Total: | 30 |  |

1. For each of the following things, either give an example of the described object (no need to justify it) or write a sentence saying why this is impossible.
(a) [1pts.] A perfect set with exactly three limit points.
(b) $[1 \mathrm{pts}$.$] A set E$ with $E^{\circ}=\emptyset$ and $\bar{E}=\mathbb{R}$.
(c) [1pts.] A connected set consisting of only irrational numbers.
(d) [1pts.] A noncompact set $A$ and an open cover of $A$ which has a finite subcover.
(e) $[1 \mathrm{pts}$.$] A continuous surjective function from the Cantor set to the interval [0,1]$.
2. [5pts.] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and $E \subseteq R$. Prove that $f(\bar{E}) \subseteq \overline{f(E)}$.
3. [4pts.] Suppose that $f, g$ are two functions with the same domain $A$ such that $f(x) \leq$ $g(x)$ for all $x \in A$, and say that $\lim _{x \rightarrow c} f(x)=L_{1}$ and $\lim _{x \rightarrow c} L_{2}$ both exist for some limit point $c$ of $A$. Prove that $L_{1} \leq L_{2}$.
4. [5pts.] Let $f$ be uniformly continuous on a bounded set $A$. Prove that the image $f(A)$ is also bounded.
5. For each of the following pairs of sets, either give an example of a continuous function $f: A \rightarrow \mathbb{R}$ whose image is $f(A)=B$ (no need to justify your answer) or explain why no such function exists.
(a) $[2 \mathrm{pts}] A=.[0,1] ; B=[1,2)$
(b) $[2 \mathrm{pts}] A=.(0,1] ; B=[1, \infty)$
(c) $[2$ pts. $] A=(0,1) ; B=(0,1) \cup(3,4)$
6. A map $f: \mathbb{R} \rightarrow \mathbb{R}$ is called open if for every $O \subset \mathbb{R}$ an open set, the image $f(O)$ is also open.
(a) [1pts.] Give an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not open, including an open set $O$ such that $f(O)$ is not open.
(b) [4pts.] Prove that any open continuous map $f$ is strictly monotone. [Hint: For any $a<b$ in $\mathbb{R}$, where must the minimum and maximum values of $f$ on $[a, b]$ lie?]
