Math 311H
 Honors Introduction to Real Analysis
 Midterm 2

Instructions: You have 80 minutes to complete the exam. There are six questions, worth a total of thirty points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name:

Question	Points	Score
1	5	
2	5	
3	4	
4	6	
5	5	
6	5	
Total:	30	

1. For each of the following things, either give an example of the described object (no need to justify it) or write a sentence saying why this is impossible.
(a) [1pts.] A nonempty perfect set consisting only of rational numbers.
(b) [1pts.] A connected set consisting of only nonzero numbers.
(c) [1pts.] A function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous at 0 and no other point.
(d) [1pts.] A continuous function $f:[a, b] \rightarrow \mathbb{R}$ and a Cauchy sequence $\left(s_{n}\right)$ of elements in $[a, b]$ such that $\left(f\left(s_{n}\right)\right)$ is not Cauchy.
(e) $[1 \mathrm{pts}$.$] A closed set E$ for which $E^{\circ} \neq 0$ and $\overline{\left(E^{\circ}\right)} \neq E$.
2. (a) [3pts.] Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Prove that if $g(r)=0$ for all points $r \in \mathbb{Q}$, then in fact $g(x)=0$ for all $x \in \mathbb{R}$.
(b) [2pts.] Prove that it follows that if $f, h: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and $f(r)=h(r)$ for all rational numbers, then $f(x)=h(x)$ for all $x \in \mathbb{R}$.
3. [4pts.] (The Squeeze Theorem for Limits of Functions) Let f, g, h be functions with the same domain A and let $f(x) \leq g(x) \leq h(x)$ for all $x \in A$. If $\lim _{x \rightarrow c} f(x)=L=$ $\lim _{x \rightarrow c} h(x)$ for c some limit point of A, prove that $\lim _{x \rightarrow c} g(x)=L$ as well.
4. For each of the following pairs of sets, either give an example of a continuous function $f: A \rightarrow \mathbb{R}$ whose image is $f(A)=B$ (no need to justify your answer) or explain why no such function exists.
(a) [2pts.] $A=(0, \infty) ; B=[1,2]$.
(b) [2pts.] $A=(0,1) \cup(2,3) ; B=(0,1) \cup(2,3) \cup(4,5]$.
(c) $[2$ pts. $] A$ is the Cantor set; $B=[0,1) \cup(2,3]$.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly continuous on \mathbb{R}.
(a) [2pts.] Prove or disprove: $h(x)=f(x)+g(x)$ is uniformly continuous on \mathbb{R}.
(b) [3pts.] Prove or disprove: $k(x)=f(x) g(x)$ is uniformly continuous on \mathbb{R}.
6. A continuous map $f: \mathbb{R} \rightarrow \mathbb{R}$ is called proper if the preimage $f^{-1}(K)=K$ of every compact set is a compact set.
(a) [1pts.] Give an example of a map $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not proper.
(b) [2pts.] Prove that the image of a proper map $f: \mathbb{R} \rightarrow \mathbb{R}$ is necessarily unbounded.
(c) [2pts.] Give an example of a map $f: \mathbb{R} \rightarrow \mathbb{R}$ which is proper and whose image is not all of \mathbb{R}.
