Math 311H

Honors Introduction to Real Analysis

Sample Midterm 1

Instructions: You have 80 minutes to complete the exam. There are six questions, worth a total of thirty points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name: \qquad

RUID: \qquad

Question	Points	Score
1	6	
2	4	
3	5	
4	5	
5	5	
6	5	
Total:	30	

1. For each of the following things, either give an example of the described object (no need to justify it) or write a sentence saying why this is impossible.
(a) [1pts.] A sequence which is not monotone and has no convergent subsequence.
(b) [1pts.] A Cauchy sequence with a divergent subsequence.
(c) $[1 \mathrm{pts}$.$] A sequence with exactly two subsequential limits.$
(d) [1pts.] A bounded sequence with no Cauchy subsequence.
(e) [1pts.] A bounded above nonempty subset A of \mathbb{R} which contains its supremum but is not closed.
(f) [1pts.] A series whose sum is 3 .
2. [4pts.] Suppose that a_{n} and b_{n} are Cauchy sequences. Prove directly that $\left(a_{n} b_{n}\right)$ is a Cauchy sequence. ["Directly" here means that your proof should not reference the fact that Cauchy sequences converge in \mathbb{R}.]
3. [5pts.] Prove the Root Test: Let $\sum_{n=1}^{\infty} a_{n}$ be a series with the property that $\lim \left|a_{n}\right|^{\frac{1}{n}}$ exists and is equal to $L<1$. Prove that $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
4. [5pts.] Consider the sequence defined recursively by $a_{0}=1$ and $a_{n+1}=2\left(a_{n}\right)^{\frac{2}{3}}$. Prove that this sequence converges and find the limit.
5. Let A and B be subsets of \mathbb{R}.
(a) [3pts.] Prove that $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
(b) [2pts.] What is the correct analog of this statement for closures of infinite unions?
6. Let $\left(a_{n}\right)$ be a bounded sequence. The limit supremum of the sequence is

$$
\lim \sup a_{n}=\lim _{N \rightarrow \infty} \sup \left\{a_{n}: n \geq N\right\}
$$

(a) [1pts.] Show that the terms $u_{N}=\sup \left\{a_{n}: n \geq N\right\}$ are decreasing, and use this to conclude that the sequence above converges. Conclude that the limit supremum of a bounded sequence always exists.
(b) [1pts.] What is the limit supremum of the sequence $\left(a_{n}\right)$ which begins $(2,370,-5,1,-1,1,-1,1,-1, \ldots)$ and alternates between 1 and -1 thereafter?
(c) [3pts.] Prove that the limit supremum is a subsequential limit of the sequence.

