Math 311H Honors Introduction to Real Analysis

Midterm 1

Instructions: You have 80 minutes to complete the exam. There are six questions, worth a total of thirty points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name: _____

Question	Points	Score	
1	6		
2	4		
3	5		
4	5		
5	5		
6	5		
Total:	30		

- 1. For each of the following things, either give an example of the described object (no need to justify it) or write a sentence saying why this is impossible.
 - (a) [1pts.] A Cauchy sequence with no monotone subsequence.
 - (b) [1pts.] A monotone sequence with no Cauchy subsequence.
 - (c) [1pts.] A sequence with exactly three subsequential limits.
 - (d) [1pts.] A series $\sum_{n=1}^{\infty} a_n$ for which $\sum_{n=1}^{\infty} |a_n|$ converges but $\sum_{n=1}^{\infty} a_n$ does not.
 - (e) [1pts.] An alternating series $\sum_{n=1}^{\infty} a_n$ of rational numbers converging to $\sqrt{2}$, and a partial sum of this series which is within .01 of $\sqrt{2}$.
 - (f) [1pts.] A sequence of nonempty closed sets $F_1 \supseteq F_2 \supseteq F_3 \supseteq \ldots$ such that $\bigcap_{n=1}^{\infty} F_n$ is empty.

2.	(a) [3pts.] Let (a_n)	be a sequence	with the prop	erty that $ a_n -$	$ a_{n+1} < \frac{1}{2^n}.$	Show that
	(a_n) is Cauchy.				-	

(b) [1pts.] Is the conclusion of part (a) true if the condition is instead $|a_n - a_{n+1}| < \frac{1}{n}$?

- 3. Consider the sequence defined recursively by $a_1 = 1$ and $a_{n+1} = \frac{5a_n}{3+a_n}$.
 - (a) [3pts.] Prove that $1 \le a_n \le 2$ for all n and (a_n) is increasing.
 - (b) [2pts.] Prove that (a_n) converges and compute the limit, justifying your steps carefully.

- 4. Let $\sum_{n=1}^{\infty} a_n$ be a series with the property that $\lim a_n = 0$.
 - (a) [1pts.] Give an example to show that $\sum_{n=1}^{\infty} a_n$ need not necessarily converge.
 - (b) [4pts.] Prove that there exists a subsequence (a_{n_k}) of (a_n) with the property that $\sum_{k=1}^{\infty} a_{n_k}$ converges. [Hint: Start by arguing that there is a subsequence (a_{n_k}) with the property that $|a_{n_k}| \leq \frac{1}{k^2}$.]

- 5. Let A_n be a subset of \mathbb{R} for every n.
 - (a) [3pts.] Prove that $\cup_{n=1}^{\infty} A_n^{\circ} \subseteq (\cup_{n=1}^{\infty} A_n)^{\circ}$.
 - (b) [2pts.] Give an example to show the inclusion above may be proper.

- 6. A sequence (a_n) is said to diverge to infinity if, for every M > 0, there exists N such that $n \ge N$ implies that $a_n > M$.
 - (a) [1pts.] Give an example (no need to justify it) of a sequence that diverges to infinity.
 - (b) [1pts.] Give an example (no need to justify it) of a sequence that diverges but does not diverge to infinity.
 - (c) [2pts.] Prove that if (a_n) is a sequence that diverges to infinity and (b_n) converges to a limit b > 0, then $(a_n b_n)$ also diverges to infinity.
 - (d) [1pts.] Give an example to show that the statement above is not true if the condition b > 0 is removed.