Math 311H
 Honors Introduction to Real Analysis
 Midterm 1

Instructions: You have 80 minutes to complete the exam. There are six questions, worth a total of thirty points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name:

Question	Points	Score
1	6	
2	4	
3	5	
4	5	
5	5	
6	5	
Total:	30	

1. For each of the following things, either give an example of the described object (no need to justify it) or write a sentence saying why this is impossible.
(a) [1pts.] A Cauchy sequence with no monotone subsequence.
(b) [1pts.] A monotone sequence with no Cauchy subsequence.
(c) [1pts.] A sequence with exactly three subsequential limits.
(d) [1pts.] A series $\sum_{n=1}^{\infty} a_{n}$ for which $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges but $\sum_{n=1}^{\infty} a_{n}$ does not.
(e) [1pts.] An alternating series $\sum_{n=1}^{\infty} a_{n}$ of rational numbers converging to $\sqrt{2}$, and a partial sum of this series which is within .01 of $\sqrt{2}$.
(f) [1pts.] A sequence of nonempty closed sets $F_{1} \supseteq F_{2} \supseteq F_{3} \supseteq \ldots$ such that $\bigcap_{n=1}^{\infty} F_{n}$ is empty.
2. (a) [3pts.] Let $\left(a_{n}\right)$ be a sequence with the property that $\left|a_{n}-a_{n+1}\right|<\frac{1}{2^{n}}$. Show that $\left(a_{n}\right)$ is Cauchy.
(b) [1pts.] Is the conclusion of part (a) true if the condition is instead $\left|a_{n}-a_{n+1}\right|<\frac{1}{n}$?
3. Consider the sequence defined recursively by $a_{1}=1$ and $a_{n+1}=\frac{5 a_{n}}{3+a_{n}}$.
(a) [3pts.] Prove that $1 \leq a_{n} \leq 2$ for all n and $\left(a_{n}\right)$ is increasing.
(b) [2pts.] Prove that $\left(a_{n}\right)$ converges and compute the limit, justifying your steps carefully.
4. Let $\sum_{n=1}^{\infty} a_{n}$ be a series with the property that $\lim a_{n}=0$.
(a) [1pts.] Give an example to show that $\sum_{n=1}^{\infty} a_{n}$ need not necessarily converge.
(b) [4pts.] Prove that there exists a subsequence $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$ with the property that $\sum_{k=1}^{\infty} a_{n_{k}}$ converges. [Hint: Start by arguing that there is a subsequence $\left(a_{n_{k}}\right)$ with the property that $\left|a_{n_{k}}\right| \leq \frac{1}{k^{2}}$.]
5. Let A_{n} be a subset of \mathbb{R} for every n.
(a) [3pts.] Prove that $\cup_{n=1}^{\infty} A_{n}^{\circ} \subseteq\left(\cup_{n=1}^{\infty} A_{n}\right)^{\circ}$.
(b) [2pts.] Give an example to show the inclusion above may be proper.
6. A sequence $\left(a_{n}\right)$ is said to diverge to infinity if, for every $M>0$, there exists N such that $n \geq N$ implies that $a_{n}>M$.
(a) [1pts.] Give an example (no need to justify it) of a sequence that diverges to infinity.
(b) [1pts.] Give an example (no need to justify it) of a sequence that diverges but does not diverge to infinity.
(c) [2pts.] Prove that if $\left(a_{n}\right)$ is a sequence that diverges to infinity and $\left(b_{n}\right)$ converges to a limit $b>0$, then $\left(a_{n} b_{n}\right)$ also diverges to infinity.
(d) [1pts.] Give an example to show that the statement above is not true if the condition $b>0$ is removed.
