
Homework 9 Solutions

October 22, 2023

Section 3.3

0.1 Problem 3.3.5

(a) True. Let K and L be compact. Then since K and L are both closed, K ∩ L is closed.
Moreover, since K and L are bounded, K ∩ L is bounded. Ergo, K ∩ L is closed and bounded,
hence compact.

(b) False. Consider Kn =
[
0, 1− 1

n

]
. Then each Kn is a closed interval, hence compact, but⋃∞

n=1Kn = [0, 1) is not closed, hence not compact.

(c) False. Let K = [0, 3] and A = (0, 1). Then K is compact but K ∩A = A is not.

(d) False. Let Fn = [n,∞), which is closed. Then F1 ⊃ F2 ⊂ F3 ⊃ . . . , but
⋂∞

n=1 Fn = ∅.

Problem 3.3.8

Let K and L be compact, and let

d(K,L) = inf{|x− y| : x ∈ K, y ∈:}.

(a) We claim that if K and L are disjoint then d(K,L) > 0. For suppose not. Then for any
n ∈ N, we may find xn ∈ K and yn ∈ L such that |xn − yn| < 1

n . Now, the sequence (xn) is
bounded since K is bounded, so there is some convergent subsequence (xnm) with limxnm = x.
Because K is compact, x ∈ K. For any ϵ > 0, choose M such that 1

M < ϵ
2 and m ≥ M implies

that |xnm − x| < ϵ
2 . Now look at the corresponding subsequence (ynm) of yn. For m ≥ M we

have |x− ynm | < |x− xnm |+ |xnm − ynm | < ϵ
2 + 1

nm
≤ ϵ

2 + 1
M < ϵ

2 + ϵ
2 = ϵ. So ynm → x. Hence

since x is closed, x ∈ L. But this is a contradiction, since K and L were supposed to be disjoint.
So, d(K,L) > 0.
The second claim is very similar. Let d = d(K,L), and for any n ∈ N, choose xn ∈ K and yn ∈ L
such that |xn − yn| < d+ 1

n . Pick a convergent subsequence (xnk
) of (xn) so that xnk

→ x ∈ K.
Then look a the corresponding sequence (ynk

) and pick a convergent subsequence (ynℓ
) so that

ynℓ
→ y. Notice that xnℓ

→ x since subsequences of convergent sequences converge to the same
limit. And furthermore d ≤ |x− y| ≤ |x− xnℓ

|+ |xnℓ
− ynℓ

|+ |ynℓ
− y|, which may be made less

than d+ ϵ for any ϵ by choosing ℓ sufficiently large. So |x− y| = d.

(b) Consider the sets K = N and L =
{
n+ 1

2n : n ∈ N
}
, which are closed (neither of them has

any limit points) but not compact. Then 0 ≤ d(K,L) ≤ 1
2n for all n ∈ N, so d(K,L) = 0.
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Problem 3.3.12

Let A be a bounded infinite set. Suppose for the sake of contradiction that A has no limit points.
Then, in particular, A is closed, hence compact. Now, for any point a ∈ A, we have that a is
not a limit point of A, and therefore there is some neightborhood Oa = Vϵa(a) containing no
point of A other than A. The sets {Oa : a ∈ A} are an open cover of A with no finite subcover,
since each set Oa contains exactly one point of A. This contradicts compactness.

Section 3.4

3.4.1

Let P be perfect and K be compact. Then consider the intersection P ∩K. The intersection
is not necessarily perfect; for example, we could take P to be [0, 1] and K to be {0}, so that
their intersection is the finite set {0}, which is not perfect. However, the intersection P ∩K is
always compact. For notice that P is in particular closed, so since K is closed, P ∩K is closed.
Furthermore since K is bounded, P ∩K is bounded. So since P ∩K is closed and bounded in
R, it is compact.

3.4.4

(a) We construct the fat Cantor set C ′ by removing the open middle quarter from each interval
at each step, so that C ′

0 = [0, 1], C ′
1 =

[
0, 38

]
∪
[
5
8 , 1

]
, and so on, and C ′ =

⋂∞
n=0C

′
n. Since this is

the intersection of closed sets it is closed. Moreover, the endpoints of any given interval in any
C ′
n remain in C ′, so for any x ∈ C ′, there is a point xn of C ′ other than x with |x − xn| < 1

2n

of x for any n, since we can always pick an endpoint of the interval in Cn containing x. (Here
the 1

2 comes from noting that at every stage the length of the intervals in C ′
n is less than half

the length of the intervals at the previous step.) So for any neighborhood Vϵ(x), if we choose n
such that 1

2n < ϵ, we have xn ∈ Vϵ(x). So x is a limit point of C ′. Since C ′ is closed and every
point in C ′ is a limit point of C ′, we see C ′ is perfect.

3.4.7

(a) We claim Q is totally disconnected. For let x < y in Q. Find an irrational number a such
that x < a < y, and let A = (−∞, a) ∩ Q and B = (a,∞) ∩ Q. Then A and B are separated
since neither has a limit point in the other, and Q = A ∩ B. Futhermore x ∈ A and y ∈ B.
Since x and y were arbitrary, Q is totally disconnected.

(b) The irrationals are also totally disconnected by the same argument; if z < w are two
irrationals we may cut at a rational number between them.


