# Homework 9 Solutions 

October 22, 2023

## Section 3.3

### 0.1 Problem 3.3.5

(a) True. Let $K$ and $L$ be compact. Then since $K$ and $L$ are both closed, $K \cap L$ is closed. Moreover, since $K$ and $L$ are bounded, $K \cap L$ is bounded. Ergo, $K \cap L$ is closed and bounded, hence compact.
(b) False. Consider $K_{n}=\left[0,1-\frac{1}{n}\right]$. Then each $K_{n}$ is a closed interval, hence compact, but $\bigcup_{n=1}^{\infty} K_{n}=[0,1)$ is not closed, hence not compact.
(c) False. Let $K=[0,3]$ and $A=(0,1)$. Then $K$ is compact but $K \cap A=A$ is not.
(d) False. Let $F_{n}=[n, \infty)$, which is closed. Then $F_{1} \supset F_{2} \subset F_{3} \supset \ldots$, but $\bigcap_{n=1}^{\infty} F_{n}=\emptyset$.

## Problem 3.3.8

Let $K$ and $L$ be compact, and let

$$
d(K, L)=\inf \{|x-y|: x \in K, y \in:\}
$$

(a) We claim that if $K$ and $L$ are disjoint then $d(K, L)>0$. For suppose not. Then for any $n \in \mathbb{N}$, we may find $x_{n} \in K$ and $y_{n} \in L$ such that $\left|x_{n}-y_{n}\right|<\frac{1}{n}$. Now, the sequence $\left(x_{n}\right)$ is bounded since $K$ is bounded, so there is some convergent subsequence $\left(x_{n_{m}}\right)$ with $\lim x_{n_{m}}=x$. Because $K$ is compact, $x \in K$. For any $\epsilon>0$, choose $M$ such that $\frac{1}{M}<\frac{\epsilon}{2}$ and $m \geq M$ implies that $\left|x_{n_{m}}-x\right|<\frac{\epsilon}{2}$. Now look at the corresponding subsequence $\left(y_{n_{m}}\right)$ of $y_{n}$. For $m \geq M$ we have $\left|x-y_{n_{m}}\right|<\left|x-x_{n_{m}}\right|+\left|x_{n_{m}}-y_{n_{m}}\right|<\frac{\epsilon}{2}+\frac{1}{n_{m}} \leq \frac{\epsilon}{2}+\frac{1}{M}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. So $y_{n_{m}} \rightarrow x$. Hence since $x$ is closed, $x \in L$. But this is a contradiction, since $K$ and $L$ were supposed to be disjoint. So, $d(K, L)>0$.
The second claim is very similar. Let $d=d(K, L)$, and for any $n \in \mathbb{N}$, choose $x_{n} \in K$ and $y_{n} \in L$ such that $\left|x_{n}-y_{n}\right|<d+\frac{1}{n}$. Pick a convergent subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ so that $x_{n_{k}} \rightarrow x \in K$. Then look a the corresponding sequence $\left(y_{n_{k}}\right)$ and pick a convergent subsequence $\left(y_{n_{\ell}}\right)$ so that $y_{n_{\ell}} \rightarrow y$. Notice that $x_{n_{\ell}} \rightarrow x$ since subsequences of convergent sequences converge to the same limit. And furthermore $d \leq|x-y| \leq\left|x-x_{n_{\ell}}\right|+\left|x_{n_{\ell}}-y_{n_{\ell}}\right|+\left|y_{n_{\ell}}-y\right|$, which may be made less than $d+\epsilon$ for any $\epsilon$ by choosing $\ell$ sufficiently large. So $|x-y|=d$.
(b) Consider the sets $K=\mathbb{N}$ and $L=\left\{n+\frac{1}{2 n}: n \in \mathbb{N}\right\}$, which are closed (neither of them has any limit points) but not compact. Then $0 \leq d(K, L) \leq \frac{1}{2 n}$ for all $n \in \mathbb{N}$, so $d(K, L)=0$.

## Problem 3.3.12

Let $A$ be a bounded infinite set. Suppose for the sake of contradiction that $A$ has no limit points. Then, in particular, $A$ is closed, hence compact. Now, for any point $a \in A$, we have that $a$ is not a limit point of $A$, and therefore there is some neightborhood $O_{a}=V_{\epsilon_{a}}(a)$ containing no point of $A$ other than $A$. The sets $\left\{O_{a}: a \in A\right\}$ are an open cover of $A$ with no finite subcover, since each set $O_{a}$ contains exactly one point of $A$. This contradicts compactness.

## Section 3.4

### 3.4.1

Let $P$ be perfect and $K$ be compact. Then consider the intersection $P \cap K$. The intersection is not necessarily perfect; for example, we could take $P$ to be $[0,1]$ and $K$ to be $\{0\}$, so that their intersection is the finite set $\{0\}$, which is not perfect. However, the intersection $P \cap K$ is always compact. For notice that $P$ is in particular closed, so since $K$ is closed, $P \cap K$ is closed. Furthermore since $K$ is bounded, $P \cap K$ is bounded. So since $P \cap K$ is closed and bounded in $\mathbb{R}$, it is compact.

## 3.4 .4

(a) We construct the fat Cantor set $C^{\prime}$ by removing the open middle quarter from each interval at each step, so that $C_{0}^{\prime}=[0,1], C_{1}^{\prime}=\left[0, \frac{3}{8}\right] \cup\left[\frac{5}{8}, 1\right]$, and so on, and $C^{\prime}=\bigcap_{n=0}^{\infty} C_{n}^{\prime}$. Since this is the intersection of closed sets it is closed. Moreover, the endpoints of any given interval in any $C_{n}^{\prime}$ remain in $C^{\prime}$, so for any $x \in C^{\prime}$, there is a point $x_{n}$ of $C^{\prime}$ other than $x$ with $\left|x-x_{n}\right|<\frac{1}{2^{n}}$ of $x$ for any $n$, since we can always pick an endpoint of the interval in $C_{n}$ containing $x$. (Here the $\frac{1}{2}$ comes from noting that at every stage the length of the intervals in $C_{n}^{\prime}$ is less than half the length of the intervals at the previous step.) So for any neighborhood $V_{\epsilon}(x)$, if we choose $n$ such that $\frac{1}{2^{n}}<\epsilon$, we have $x_{n} \in V_{\epsilon}(x)$. So $x$ is a limit point of $C^{\prime}$. Since $C^{\prime}$ is closed and every point in $C^{\prime}$ is a limit point of $C^{\prime}$, we see $C^{\prime}$ is perfect.

### 3.4.7

(a) We claim $\mathbb{Q}$ is totally disconnected. For let $x<y$ in $\mathbb{Q}$. Find an irrational number $a$ such that $x<a<y$, and let $A=(-\infty, a) \cap \mathbb{Q}$ and $B=(a, \infty) \cap \mathbb{Q}$. Then $A$ and $B$ are separated since neither has a limit point in the other, and $\mathbb{Q}=A \cap B$. Futhermore $x \in A$ and $y \in B$. Since $x$ and $y$ were arbitrary, $\mathbb{Q}$ is totally disconnected.
(b) The irrationals are also totally disconnected by the same argument; if $z<w$ are two irrationals we may cut at a rational number between them.

