Homework 8 Solutions

October 18, 2023

Section 3.2

Problem 3.2.2

First we consider A = {(-1)"+ 2 :n € N}.

(d) Recall from last week that the limit points of A are —1 and 1. Since 1 is already in the set
for n = 2, the closure of A is A= AU {-1}.
Next we consider B={z € Q:0 <z < 1}.

(d) By part (a) from last week, the limit points of B are all of the points in [0, 1] and there are
no isolated points. Ergo, the closure of B is B = [0, 1].

Problem 3.2.10

(a) This is impossible. Suppose that A is a countable subset of [0,1]. Then list the elements
of A ={aj,aqg,...} such that a, # a,, if n # m. Consider the sequence (a,). This sequence
is bounded, since every element a,, is contained in [0,1]. So by Bolzano-Weierstrass it has a
convergence subsequence (ay, ) with limit some a. The element a may appear in the subsequence
(an, ), but it does so at most once, so we may delete it if it does. Then there is a sequence (ay, )
of elements in A not equal to a converging to a. Therefore a is a limit point of A. Hence A
must have at least one limit point.

(b) This is possible. Consider the set B = QN[0, 1] consisting of all the rationals in the interval
(0,1), which is certainly countable. Then see Problem 3.2.2 for the argument that every point
of B is a limit point of B.

(c) This is impossible. Let A be a set with infinitely many isolated points. For each a and
isolated point of A, there is some e-neighborhood V¢ (a) containing no other points of A. Choose
a rational number r € Vi(a) and a rational number s such that § < s < 5. Then consider the
neighborhood Vir. Firstly we claim it contains a, since |r —a| < § < s. Secondly we claim it is
contained in V(a). For if z € Vi(r), then |z —a| < |z — 7|+ |r—a| <s+ § < §+ § <e Ergo
for each isolated point of A we have found a pair of rationals (s,r) such that a € Vy(r) and the
neighborhood Vs(7) contains no other element of A. But there are only countably many unique
pairs of rational numbers. Hence, the number of isolated points of A is countable.



Problem 3.2.13

Suppose that A C R is a nonempty set which is both closed and open, and is not all of R. Then
we can find some = € R such that ¢ A. Observe that B = AN (—oo,z) = AN [—o0, z] is still
both closed and open, since finite intersections of open sets are open and finite intersections of
closed sets are closed. If B is nonempty, since B is bounded above it has a supremum in R, call
it y. Since B is closed, y € B. Since B is open, y ¢ B. This is a contradiction. If B is empty,
we have A bounded below by z, and we may repeat this argument with the infimum of B, again
obtaining a contradiction. So the original assumption that it was possible to find = ¢ A for A
nonempty is false. Hence A is either () or R.

Problem 3.2.14

(a) Recall that E is the union of E and the set L of limit points of E. But E is closed if and
only if E contains all its limit points, or equivalently if L C E and therefore E = EUL = E.
So we are done.

Similarly, E° is the set of points © € E with the property that there is some ¢ > 0 such that
Ve(x) C E. But F is open if and only if every x € E has this property, or in other words if and
only if £° = F.

(b) Let E C R. Since E is closed and contains E, (E)¢ is an open set contained in E¢. There-
fore in particular, (E)¢ C (E)°. Now by the same token, (E°)° is an open set contained in E,
so ((E€)°)¢ is a closed set containing (E€)¢ = E, hence contains E. So E C ((E€)°)¢, implying
that (E€)° C E°. Ergo we see that (E)¢ = (E°)°.

For the other statement, again start with £ C R. Let F' = E°. Then by the preceding part,
F° = (F°)°, so we have that E¢° = E°. Taking the complement of both sides we conclude that
B = (E°)-.

Section 3.3

Problem 3.3.1

Suppose that K C R is compact and nonempty. Then K is bounded, so K has a supremum and
infimum. Moreover K is closed, and a closed bounded set contains its supremum and infimum,
so K in fact contains its supremum and infimum.

Problem 3.3.2

(a) The set N is not compact. The sequence (1,2,3,...) has no subsequence converging in N,
or indeed converging at all.

(b) The set A= QnNJ0,1] is not compact. The sequence (.3,.31,.314,.3141,...) whose limit is
1o has no subsequence converging in A.

(c) The Cantor set is compact, since it is closed and bounded in R.



(d) Theset A= {a,=1+%+ 5+ -+ 5 :n €N} is not compact. The sequence (ay) has
no subsequence converging in A.

(e) The set A= {1, %, %, %, . } is compact. It is clearly bounded. As for whether it is closed,
notice that a convergent sequence of points (a,) in A has a convergent monotone subsequence

(an, ). If (an,) is not eventually constant, then after possibly deleting repeated terms it must

be a subsequence of (%, %, %, .. ), and therefore converge to 1. So 1 is the only limit point of A.

And 1 € A, so in fact A is closed, hence compact since it is also bounded.

Problem 3.3.11

(a) The open cover {O, = (n— 3,n+ 1) : n € N} of N has no finite subcover, since each O,
contains only a single point of the infinite set N.

(b) Consider the sets

O =Qn((~1,.3) U(.4,2)
Oy = QN ((—1,.31) U (.32,2))
O3 = QN ((—1,.314) U (.315,2))

and so on, so that O, is missing all rationals within an interval of length 10% containing {5

but all rationals in the interval [0, 1] fall within O, for sufficiently large n. This open cover of
A =QnN|[0,1] does not have a finite subcover - if it did, then since O1 C O C O3 C ..., we
would have that A C Oy for some N, which is plainly false.

(d) For the set A = {a, =141+ % +- 4+ n% :n € N}, we may consider the open cover
{On = (an - W, an + W) 'n € N}. Then each of the open sets O,, contains a single

point of the infinite set A, hence there is no finite subcover.



