Homework 8 Solutions

October 18, 2023

Section 3.2

Problem 3.2.2

First we consider $A=\left\{(-1)^{n}+\frac{2}{n}: n \in \mathbb{N}\right\}$.
(d) Recall from last week that the limit points of A are -1 and 1 . Since 1 is already in the set for $n=2$, the closure of A is $\bar{A}=A \cup\{-1\}$.
Next we consider $B=\{x \in \mathbb{Q}: 0<x<1\}$.
(d) By part (a) from last week, the limit points of B are all of the points in $[0,1]$ and there are no isolated points. Ergo, the closure of B is $\bar{B}=[0,1]$.

Problem 3.2.10

(a) This is impossible. Suppose that A is a countable subset of $[0,1]$. Then list the elements of $A=\left\{a_{1}, a_{2}, \ldots\right\}$ such that $a_{n} \neq a_{m}$ if $n \neq m$. Consider the sequence $\left(a_{n}\right)$. This sequence is bounded, since every element a_{n} is contained in $[0,1]$. So by Bolzano-Weierstrass it has a convergence subsequence $\left(a_{n_{k}}\right)$ with limit some a. The element a may appear in the subsequence $\left(a_{n_{k}}\right)$, but it does so at most once, so we may delete it if it does. Then there is a sequence ($a_{n_{k}}$) of elements in A not equal to a converging to a. Therefore a is a limit point of A. Hence A must have at least one limit point
(b) This is possible. Consider the set $B=\mathbb{Q} \cap[0,1]$ consisting of all the rationals in the interval $(0,1)$, which is certainly countable. Then see Problem 3.2.2 for the argument that every point of B is a limit point of B.
(c) This is impossible. Let A be a set with infinitely many isolated points. For each a and isolated point of A, there is some ϵ-neighborhood $V_{\epsilon}(a)$ containing no other points of A. Choose a rational number $r \in V_{\frac{\epsilon}{4}}(a)$ and a rational number s such that $\frac{\epsilon}{4}<s<\frac{\epsilon}{2}$. Then consider the neighborhood $V_{s} r$. Firstly we claim it contains a, since $|r-a|<\frac{\epsilon}{4}<s$. Secondly we claim it is contained in $V_{\epsilon}(a)$. For if $x \in V_{s}(r)$, then $|x-a| \leq|x-r|+|r-a|<s+\frac{\epsilon}{4}<\frac{\epsilon}{2}+\frac{\epsilon}{4}<\epsilon$. Ergo for each isolated point of A we have found a pair of rationals (s, r) such that $a \in V_{s}(r)$ and the neighborhood $V_{s}(r)$ contains no other element of A. But there are only countably many unique pairs of rational numbers. Hence, the number of isolated points of A is countable.

Problem 3.2.13

Suppose that $A \subset \mathbb{R}$ is a nonempty set which is both closed and open, and is not all of \mathbb{R}. Then we can find some $x \in \mathbb{R}$ such that $x \notin A$. Observe that $B=A \cap(-\infty, x)=A \cap[-\infty, x]$ is still both closed and open, since finite intersections of open sets are open and finite intersections of closed sets are closed. If B is nonempty, since B is bounded above it has a supremum in \mathbb{R}, call it y. Since B is closed, $y \in B$. Since B is open, $y \notin B$. This is a contradiction. If B is empty, we have A bounded below by x, and we may repeat this argument with the infimum of B, again obtaining a contradiction. So the original assumption that it was possible to find $x \notin A$ for A nonempty is false. Hence A is either \emptyset or \mathbb{R}.

Problem 3.2.14

(a) Recall that \bar{E} is the union of E and the set L of limit points of E. But E is closed if and only if E contains all its limit points, or equivalently if $L \subset E$ and therefore $\bar{E}=E \cup L=E$. So we are done.

Similarly, E° is the set of points $x \in E$ with the property that there is some $\epsilon>0$ such that $V_{\epsilon}(x) \subseteq E$. But E is open if and only if every $x \in E$ has this property, or in other words if and only if $E^{\circ}=E$.
(b) Let $E \subseteq \mathbb{R}$. Since \bar{E} is closed and contains $E,(\bar{E})^{c}$ is an open set contained in E^{c}. Therefore in particular, $(\bar{E})^{c} \subseteq\left(E^{c}\right)^{\circ}$. Now by the same token, $\left(E^{c}\right)^{\circ}$ is an open set contained in E^{c}, so $\left(\left(E^{c}\right)^{\circ}\right)^{c}$ is a closed set containing $\left(E^{c}\right)^{c}=E$, hence contains \bar{E}. So $\bar{E} \subseteq\left(\left(E^{c}\right)^{\circ}\right)^{c}$, implying that $\left(E^{c}\right)^{\circ} \subseteq \bar{E}^{c}$. Ergo we see that $(\bar{E})^{c}=\left(E^{c}\right)^{\circ}$.

For the other statement, again start with $E \subset \mathbb{R}$. Let $F=E^{c}$. Then by the preceding part, $\bar{F}^{c}=\left(F^{c}\right)^{\circ}$, so we have that $\overline{E^{c}}=E^{\circ}$. Taking the complement of both sides we conclude that $\overline{E^{c}}=\left(E^{\circ}\right)^{c}$.

Section 3.3

Problem 3.3.1

Suppose that $K \subset \mathbb{R}$ is compact and nonempty. Then K is bounded, so K has a supremum and infimum. Moreover K is closed, and a closed bounded set contains its supremum and infimum, so K in fact contains its supremum and infimum.

Problem 3.3.2

(a) The set \mathbb{N} is not compact. The sequence $(1,2,3, \ldots)$ has no subsequence converging in \mathbb{N}, or indeed converging at all.
(b) The set $A=\mathbb{Q} \cap[0,1]$ is not compact. The sequence $(.3, .31, .314, .3141, \ldots)$ whose limit is $\frac{\pi}{10}$ has no subsequence converging in A.
(c) The Cantor set is compact, since it is closed and bounded in \mathbb{R}.
(d) The set $A=\left\{a_{n}=1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{n^{2}}: n \in \mathbb{N}\right\}$ is not compact. The sequence $\left(a_{n}\right)$ has no subsequence converging in A.
(e) The set $A=\left\{1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right\}$ is compact. It is clearly bounded. As for whether it is closed, notice that a convergent sequence of points $\left(a_{n}\right)$ in A has a convergent monotone subsequence $\left(a_{n_{k}}\right)$. If $\left(a_{n_{k}}\right)$ is not eventually constant, then after possibly deleting repeated terms it must be a subsequence of $\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right)$, and therefore converge to 1 . So 1 is the only limit point of A. And $1 \in A$, so in fact A is closed, hence compact since it is also bounded.

Problem 3.3.11

(a) The open cover $\left\{O_{n}=\left(n-\frac{1}{2}, n+\frac{1}{2}\right): n \in \mathbb{N}\right\}$ of \mathbb{N} has no finite subcover, since each O_{n} contains only a single point of the infinite set \mathbb{N}.
(b) Consider the sets

$$
\begin{aligned}
& O_{1}=\mathbb{Q} \cap((-1, .3) \cup(.4,2)) \\
& O_{2}=\mathbb{Q} \cap((-1, .31) \cup(.32,2)) \\
& O_{3}=\mathbb{Q} \cap((-1, .314) \cup(.315,2))
\end{aligned}
$$

and so on, so that O_{n} is missing all rationals within an interval of length $\frac{1}{10^{n}}$ containing $\frac{\pi}{10}$ but all rationals in the interval $[0,1]$ fall within O_{n} for sufficiently large n. This open cover of $A=\mathbb{Q} \cap[0,1]$ does not have a finite subcover - if it did, then since $O_{1} \subset O_{2} \subset O_{3} \subset \ldots$, we would have that $A \subset O_{N}$ for some N, which is plainly false.
(d) For the set $A=\left\{a_{n}=1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{n^{2}}: n \in \mathbb{N}\right\}$, we may consider the open cover $\left\{O_{n}=\left(a_{n}-\frac{1}{2(n+1)^{2}}, a_{n}+\frac{1}{2(n+1)^{2}}\right): n \in \mathbb{N}\right\}$. Then each of the open sets O_{n} contains a single point of the infinite set A, hence there is no finite subcover.

