
Homework 8 Solutions

October 18, 2023

Section 3.2

Problem 3.2.2

First we consider A =
{
(−1)n + 2

n : n ∈ N
}
.

(d) Recall from last week that the limit points of A are −1 and 1. Since 1 is already in the set
for n = 2, the closure of A is A = A ∪ {−1}.
Next we consider B = {x ∈ Q : 0 < x < 1}.

(d) By part (a) from last week, the limit points of B are all of the points in [0, 1] and there are
no isolated points. Ergo, the closure of B is B = [0, 1].

Problem 3.2.10

(a) This is impossible. Suppose that A is a countable subset of [0, 1]. Then list the elements
of A = {a1, a2, . . . } such that an ̸= am if n ̸= m. Consider the sequence (an). This sequence
is bounded, since every element an is contained in [0, 1]. So by Bolzano-Weierstrass it has a
convergence subsequence (ank

) with limit some a. The element a may appear in the subsequence
(ank

), but it does so at most once, so we may delete it if it does. Then there is a sequence (ank
)

of elements in A not equal to a converging to a. Therefore a is a limit point of A. Hence A
must have at least one limit point.

(b) This is possible. Consider the set B = Q∩ [0, 1] consisting of all the rationals in the interval
(0, 1), which is certainly countable. Then see Problem 3.2.2 for the argument that every point
of B is a limit point of B.

(c) This is impossible. Let A be a set with infinitely many isolated points. For each a and
isolated point of A, there is some ϵ-neighborhood Vϵ(a) containing no other points of A. Choose
a rational number r ∈ V ϵ

4
(a) and a rational number s such that ϵ

4 < s < ϵ
2 . Then consider the

neighborhood Vsr. Firstly we claim it contains a, since |r − a| < ϵ
4 < s. Secondly we claim it is

contained in Vϵ(a). For if x ∈ Vs(r), then |x− a| ≤ |x− r|+ |r − a| < s+ ϵ
4 < ϵ

2 + ϵ
4 < ϵ. Ergo

for each isolated point of A we have found a pair of rationals (s, r) such that a ∈ Vs(r) and the
neighborhood Vs(r) contains no other element of A. But there are only countably many unique
pairs of rational numbers. Hence, the number of isolated points of A is countable.
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Problem 3.2.13

Suppose that A ⊂ R is a nonempty set which is both closed and open, and is not all of R. Then
we can find some x ∈ R such that x /∈ A. Observe that B = A ∩ (−∞, x) = A ∩ [−∞, x] is still
both closed and open, since finite intersections of open sets are open and finite intersections of
closed sets are closed. If B is nonempty, since B is bounded above it has a supremum in R, call
it y. Since B is closed, y ∈ B. Since B is open, y /∈ B. This is a contradiction. If B is empty,
we have A bounded below by x, and we may repeat this argument with the infimum of B, again
obtaining a contradiction. So the original assumption that it was possible to find x /∈ A for A
nonempty is false. Hence A is either ∅ or R.

Problem 3.2.14

(a) Recall that E is the union of E and the set L of limit points of E. But E is closed if and
only if E contains all its limit points, or equivalently if L ⊂ E and therefore E = E ∪ L = E.
So we are done.

Similarly, E◦ is the set of points x ∈ E with the property that there is some ϵ > 0 such that
Vϵ(x) ⊆ E. But E is open if and only if every x ∈ E has this property, or in other words if and
only if E◦ = E.

(b) Let E ⊆ R. Since E is closed and contains E, (E)c is an open set contained in Ec. There-
fore in particular, (E)c ⊆ (Ec)◦. Now by the same token, (Ec)◦ is an open set contained in Ec,
so ((Ec)◦)c is a closed set containing (Ec)c = E, hence contains E. So E ⊆ ((Ec)◦)c, implying
that (Ec)◦ ⊆ E

c
. Ergo we see that (E)c = (Ec)◦.

For the other statement, again start with E ⊂ R. Let F = Ec. Then by the preceding part,
F

c
= (F c)◦, so we have that Ecc = E◦. Taking the complement of both sides we conclude that

Ec = (E◦)c.

Section 3.3

Problem 3.3.1

Suppose that K ⊂ R is compact and nonempty. Then K is bounded, so K has a supremum and
infimum. Moreover K is closed, and a closed bounded set contains its supremum and infimum,
so K in fact contains its supremum and infimum.

Problem 3.3.2

(a) The set N is not compact. The sequence (1, 2, 3, . . . ) has no subsequence converging in N,
or indeed converging at all.

(b) The set A = Q∩ [0, 1] is not compact. The sequence (.3, .31, .314, .3141, . . . ) whose limit is
π
10 has no subsequence converging in A.

(c) The Cantor set is compact, since it is closed and bounded in R.



(d) The set A =
{
an = 1 + 1

4 + 1
9 + · · ·+ 1

n2 : n ∈ N
}
is not compact. The sequence (an) has

no subsequence converging in A.

(e) The set A =
{
1, 12 ,

2
3 ,

3
4 , . . .

}
is compact. It is clearly bounded. As for whether it is closed,

notice that a convergent sequence of points (an) in A has a convergent monotone subsequence
(ank

). If (ank
) is not eventually constant, then after possibly deleting repeated terms it must

be a subsequence of
(
1
2 ,

2
3 ,

3
4 , . . .

)
, and therefore converge to 1. So 1 is the only limit point of A.

And 1 ∈ A, so in fact A is closed, hence compact since it is also bounded.

Problem 3.3.11

(a) The open cover
{
On =

(
n− 1

2 , n+ 1
2

)
: n ∈ N

}
of N has no finite subcover, since each On

contains only a single point of the infinite set N.

(b) Consider the sets

O1 = Q ∩ ((−1, .3) ∪ (.4, 2))

O2 = Q ∩ ((−1, .31) ∪ (.32, 2))

O3 = Q ∩ ((−1, .314) ∪ (.315, 2))

and so on, so that On is missing all rationals within an interval of length 1
10n containing π

10
but all rationals in the interval [0, 1] fall within On for sufficiently large n. This open cover of
A = Q ∩ [0, 1] does not have a finite subcover - if it did, then since O1 ⊂ O2 ⊂ O3 ⊂ . . . , we
would have that A ⊂ ON for some N , which is plainly false.

(d) For the set A =
{
an = 1 + 1

4 + 1
9 + · · ·+ 1

n2 : n ∈ N
}
, we may consider the open cover{

On =
(
an − 1

2(n+1)2
, an + 1

2(n+1)2

)
: n ∈ N

}
. Then each of the open sets On contains a single

point of the infinite set A, hence there is no finite subcover.


