Homework 7 Solutions

October 10, 2023

Section 2.8

2.8.7

Let $\sum_{i=1}^{\infty} a_{i}$ converge absolutely to A and $\sum_{j=1}^{\infty} b_{j}$ converge absolutely to B.
(a) We wish to show $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|a_{i} b_{j}\right|$ converges. By assumption $\sum_{j=1}^{\infty}\left|b_{j}\right|$ converges, to some C. Then for fixed i, we see that $\sum_{j=1}^{\infty}\left|a_{i} b_{j}\right|=\sum_{j=1}^{\infty}\left|a_{i}\right|\left|b_{j}\right|=\left|a_{i}\right| C$ by the algebraic limit theorem. Now we have

$$
\begin{aligned}
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|a_{i} b_{j}\right| & =\sum_{i=1}^{\infty}\left|a_{i}\right| C \\
& =C D
\end{aligned}
$$

where D is the number such that $\sum_{i=1}^{\infty}\left|a_{i}\right|=D$. In particular the double sum converges.
(b) We observe that $s_{n n}$ is the product of the nth partial sum t_{n} of $\sum a_{i}$ and r_{n} the nth partial sum of $\sum b_{j}$. Since $t_{n} \rightarrow A$ and $r_{n} \rightarrow B$, the Algebraic Limit Theorem tells us that $r_{n} t_{n} \rightarrow A B$. Now we recall from Theorem 2.8.1 that $\lim _{n \rightarrow \infty} s_{n n}$ is the double sum $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i} b_{j}$, which is precisely the sum $\sum_{k=1}^{\infty} d_{k}$ from the problem statement.

Section 3.2

Problem 3.2.2

First we consider $A=\left\{(-1)^{n}+\frac{2}{n}: n \in \mathbb{N}\right\}$. It is helpful to notice that we can rewrite A as the unions of the two sets $C=\left\{-1+\frac{2}{n}: n\right.$ odd $\}=\left\{-1+\frac{2}{2 n-1}: n \in \mathbb{N}\right\}=\left\{1,-\frac{1}{3},-\frac{3}{5}, \ldots\right\}$ and $D=\left\{1+\frac{2}{n}: n\right.$ even $\}=\left\{1+\frac{1}{n}: n \in \mathbb{N}\right\}=\left\{2, \frac{3}{2}, \frac{4}{3}, \ldots\right\}$.
(a) We claim that the limit points of A are 1 and -1 . To see that -1 is a limit point we observe that $\left(-1+\frac{2}{2 n-1}\right)$ is a sequence of points in A not equal to -1 converging to -1 ; to see that 1 is a limit point we observe that $\left(1+\frac{1}{n}\right)$ is a sequence of points in A not equal to 1 converging to 1 . Now we must show that there are no other limit points. For $x \in \mathbb{R}$ which is not 1 or -1 , let $\epsilon=\frac{1}{2} \min \{|x-1|,|x-(-1)|\}$. Then in particular $V_{\epsilon}(x)$ has no intersection with $V_{\epsilon}(1)$ and $V_{\epsilon}(-1)$. Now, for $N>\frac{2}{\epsilon}$, all of the points $(-1)^{n}+\frac{2}{n}$ for which n is odd lie in $V_{\epsilon}(-1)$ and all of the points $(-1)^{n}+\frac{2}{n}$ for which n is even lie in $V_{\epsilon}(1)$. In particular $V_{\epsilon}(x)$ contains finitely many (at most $2 N-2$) points of A. But if x were a limit point of A, every neighborhood of x would contain infinitely many points of A. Ergo, x is not a limit point of A.
(b) The set is not open; observe that any neighborhood $V_{\epsilon}(2)$ contains a point x such that $x>\frac{3}{2}$, which therefore is not in A. So there is no $\epsilon>0$ such that $V_{\epsilon}(2)$ lies in A. Hence A is not open. The set A is also not closed, since -1 is a limit point not contained in A.
(c) All of the points of A except for 1 are isolated points, by the argument in part (a).

Next we consider $B=\{x \in \mathbb{Q}: 0<x<1\}$.
(a) The set of limit points of B is the entire closed interval $[0,1]$. For let $q \in[0,1]$. Then we claim that any ϵ-neighborhood $V_{\epsilon}(q)$ contains a rational number not equal to q in $(0,1)$. For if $q \neq 0,1$, there is some $\epsilon^{\prime}<\epsilon$ such that $V_{\epsilon^{\prime}}(q) \subset(0,1)$. Then there is a rational number $r \neq q$ in the interval $\left(q-\epsilon^{\prime}, q\right)$ which is an element of $(0,1)$ and therefore of B, and $r \in\left(q-\epsilon^{\prime}, q\right) \subset$ $V_{\epsilon^{\prime}}(q) \subset V_{\epsilon}(q)$, so every neighborhood of q contains a point of B other than q and q is therefore a limit point of A. Likewise, if $q=0$, there is some $\epsilon^{\prime}<\epsilon$ such that $\left(0, \epsilon^{\prime}\right) \subset(0,1)$, and there is a rational number $r \neq q$ in $\left(0, \epsilon^{\prime}\right)$ which therefore also lies in $V_{\epsilon}(0)$, so every neighborhood of 0 contains a point of B, hence 0 is a limit point of B. Similarly 1 is a limit point of B. We conclude that the limit points of B are $[0,1]$.
(b) The set is neither open nor closed. For not open, observe that every ϵ-neighborhood $V_{\epsilon}\left(\frac{1}{2}\right)$ contains an irrational number, hence is not a subset of B. So $\frac{1}{2}$ has no ϵ-neighborhood which is a subset of B. For not closed, observe that 1 is a limit point of B not contained in B.
(c) There are no isolated points; every point is a limit point, as discussed in part (a).

Problem 3.2.3

(a) The set \mathbb{Q} is neither open nor closed. To see that it is not open, consider $0 \in \mathbb{Q}$. Any $V_{\epsilon}(0)=(-\epsilon, \epsilon)$ contains an irrational number. Thus there does not exist any ϵ such that $V_{\epsilon}(0) \subset \mathbb{Q}$. To see that the set is not closed, consider $\sqrt{2}$. Any neighborhood $V_{\epsilon}(\sqrt{2})$ contains a rational number, so $\sqrt{2}$ is a limit point of \mathbb{Q} not contained in \mathbb{Q}. Hence \mathbb{Q} is not closed.
(b) The set \mathbb{N} is not open, but is closed. To see that it is not open, consider $0 \in \mathbb{N}$. For any $\epsilon>0, V_{\epsilon}(0)$ contains a point that is not a natural number, hence is not contained in \mathbb{N}. So \mathbb{N} is not open. To see that it is closed, notice that every element $n \in \mathbb{N}$ has a neighborhood ($n-\frac{1}{2}, n+\frac{1}{2}$) which contains no other element of \mathbb{N}. So every element of \mathbb{N} is an isolated point. Moreover, any $x \notin \mathbb{N}$ has a neighborhood $V_{\epsilon}(x)$ containing no natural numbers by letting $n<x<n+1$ and setting $\epsilon=\min \{|x-n|,|x-(n+1)|\}$. So x is not a limit point of \mathbb{N}. Ergo \mathbb{N} has no limit points, hence trivially contains all its limit points and is closed.
(c) The set $A=\{x \in \mathbb{R}: x \neq 0\}$ is open but not closed. To see it is open, observe that $A=(-\infty, 0) \cup(0, \infty)$ is the union of two open intervals, hence open. To see it is not closed, observe that for any $\epsilon>0$, the neighborhood $V_{\epsilon}(0)$ contains a point of A. So 0 is a limit point of A not contained in A, hence A is not closed.
(d) The set $A=\left\{1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{n^{2}}: n \in \mathbb{N}\right\}$ is neither closed nor open. For not open, observe that any neighborhood $V_{\epsilon}(1)$ contains a point not in A. For not closed, let $\alpha=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. Then there is a sequence of points $\left(a_{n}\right)$ in A with $a_{n} \neq \alpha$ converging to α, by taking $a_{n}=$ $1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{n^{2}}$. So α is a limit point of A not contained in A. Hence A is not closed.
(e) The set $A=\left\{a_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}: n \in \mathbb{N}\right\}$ is closed but not open. For not open, observe that any neighborhood $V_{\epsilon}(1)$ contains a point not in A. For not closed, suppose for the sake of contradiction that α is a limit point of A. Then there is a sequence of points $\left(b_{n}\right)$ in A converging to α which does not contain α as any of its elements, hence is not eventually constant. By Bolzano-Weierstrass, the sequence $\left(b_{n}\right)$ must have a monotone subsequence $\left(b_{n_{k}}\right)$, which also converges to α because subsequences of convergent sequences all converge to the same limit, and is also not eventually constant. However, $\left(a_{n}\right)$ is already in monotone increasing order, which implies that after possibly deleting repeated terms, $\left(b_{n_{k}}\right)$ appears as some subsequence $\left(a_{n_{\ell}}\right)$ of $\left(a_{n}\right)$. However, $\left(a_{n}\right)$ is monotone and unbounded above, hence does not have any convergent subsequences. This is a contradiction. So A is closed.

Problem 3.2.6

(a) False; consider $(\infty, \sqrt{2}) \cup(\sqrt{2}, \infty)$.
(b) False; let $A_{n}=[n, \infty)$ for $n \in \mathbb{N}$. Each A_{n} is closed and $A_{1} \supset A_{2} \supset A_{3} \supset \ldots$, but $\cap_{n=1}^{\infty} A_{n}=\emptyset$.
(c) True. Let A be open and nonempty. Choose an element $a \in A$. Then there is some ϵ such that $V_{\epsilon}(a) \subseteq A$, and there is certainly a rational number in $V_{\epsilon}(a)=(a-\epsilon, a+\epsilon)$. So A contains a rational number.
(d) False. Consider $A=\{\sqrt{2}\} \cup\left\{\sqrt{2}+\frac{1}{n}: n \in \mathbb{N}\right\}$. This set A has a single limit point, $\sqrt{2}$, which it contains; therefore A is closed. The set A is also clearly infinite, and is bounded, since for all $a \in A, 0<a<4$.
(e) True. The Cantor set C is constructed as an intersection of sets C_{i}. Each C_{i} is the finite union of closed intervals, hence closed since the finite union of closed sets is closed. And then $C=\cap_{i=1}^{\infty} C_{i}$ is the infinite intersection of closed sets, hence closed since intersections of closed sets are closed.

Other Problems

Problem 6

(a) Let $b_{n}=\frac{1}{n!}$. Then $\left|\frac{b_{n+1}}{b_{n}}\right|=\left|\frac{1}{n+1}\right|$, so $\lim \left|\frac{b_{n}+1}{b_{n}}\right|=0$. Ergo $\sum_{n=0}^{\infty} b_{n}=\sum_{n=0}^{\infty} \frac{1}{n!}$ converges absolutely by the Ratio Test.
(b) We compute that

$$
\begin{aligned}
a_{n} & =\left(1+\frac{1}{n}\right)^{n} \\
& =\sum_{k=0}^{n} \frac{n!}{k!(n-k)!}\left(\frac{1}{n}\right)^{k} \\
& =\sum_{k=0}^{n} \frac{n!}{(n-k)!}\left(\frac{1}{n}\right)^{k} \frac{1}{k!} \\
& =\frac{1}{0!}+\sum_{k=1}^{n} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!}
\end{aligned}
$$

Observe that for $n \geq 1, \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \leq 1$, so $a_{n} \leq \frac{1}{0!}+\frac{1}{1!}+\cdots+\frac{1}{n!}=s_{n}$. Note that since $\left(s_{n}\right)$ is increasing, this in particular implies $a_{n} \leq s$ for all $n \geq 1$.
(c) Notice that

$$
\begin{aligned}
a_{n} & =\frac{1}{0!}+\sum_{k=1}^{n} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!} \\
& =\frac{1}{0!}+\sum_{k=1}^{m} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!}+\sum_{k=m+1}^{n} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!} \\
& \geq \frac{1}{0!}+\sum_{k=1}^{m} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!}
\end{aligned}
$$

Fix m and call the righthand side t_{n}^{m}. Then as $n \rightarrow \infty$, we see that $t_{n}^{m} \rightarrow 1+1+\frac{1}{2!}+\cdots \frac{1}{m!}=s_{m}$. In particular, given any ϵ, we observe that there exists some N_{m} such that $n \geq N_{m}$ implies that $t_{n}^{m}>s_{m}-\frac{\epsilon}{2}$. Ergo $n \geq N_{m}$ implies in particular that $a_{n}>s_{m}-\frac{\epsilon}{2}$.
(d) Now we complete the proof. Let $\epsilon>0$. Choose any integer m such that $s-\frac{\epsilon}{2}<s_{m} \leq s$, which certainly exists since the sequence (s_{n}) converges to s. Then choose N_{m} as in part (c) so that $n \geq N_{m}$ implies $a_{n}>s_{m}-\frac{\epsilon}{2}$. Then in total we have

$$
s \geq a_{n}>s_{m}-\frac{\epsilon}{2}>s-\frac{\epsilon}{2}-\frac{\epsilon}{2}=s-\epsilon .
$$

In particular $n \geq N_{m}$ implies $\left|a_{n}-s\right|<\epsilon$. So $\lim a_{n}=s$.
This outline is based on the proof given in Rudin's book Principles of Mathematical Analysis.

