
Homework 7 Solutions

October 10, 2023

Section 2.8

2.8.7

Let
∑∞

i=1 ai converge absolutely to A and
∑∞

j=1 bj converge absolutely to B.

(a) We wish to show
∑∞

i=1

∑∞
j=1 |aibj | converges. By assumption

∑∞
j=1 |bj | converges, to some

C. Then for fixed i, we see that
∑∞

j=1 |aibj | =
∑∞

j=1 |ai||bj | = |ai|C by the algebraic limit
theorem. Now we have

∞∑
i=1

∞∑
j=1

|aibj | =
∞∑
i=1

|ai|C

= CD

where D is the number such that
∑∞

i=1 |ai| = D. In particular the double sum converges.

(b) We observe that snn is the product of the nth partial sum tn of
∑

ai and rn the nth partial
sum of

∑
bj . Since tn → A and rn → B, the Algebraic Limit Theorem tells us that rntn → AB.

Now we recall from Theorem 2.8.1 that limn→∞ snn is the double sum
∑∞

i=1

∑∞
j=1 aibj , which is

precisely the sum
∑∞

k=1 dk from the problem statement.

Section 3.2

Problem 3.2.2

First we consider A =
{
(−1)n + 2

n : n ∈ N
}
. It is helpful to notice that we can rewrite A as the

unions of the two sets C =
{
−1 + 2

n : n odd
}
=

{
−1 + 2

2n−1 : n ∈ N
}
=

{
1,−1

3 ,−
3
5 , . . .

}
and

D =
{
1 + 2

n : n even
}
=

{
1 + 1

n : n ∈ N
}
=

{
2, 32 ,

4
3 , . . .

}
.

(a) We claim that the limit points of A are 1 and −1. To see that −1 is a limit point we observe
that (−1 + 2

2n−1) is a sequence of points in A not equal to −1 converging to −1; to see that 1

is a limit point we observe that (1 + 1
n) is a sequence of points in A not equal to 1 converging

to 1. Now we must show that there are no other limit points. For x ∈ R which is not 1 or −1,
let ϵ = 1

2 min{|x − 1|, |x − (−1)|}. Then in particular Vϵ(x) has no intersection with Vϵ(1) and
Vϵ(−1). Now, for N > 2

ϵ , all of the points (−1)n + 2
n for which n is odd lie in Vϵ(−1) and all of

the points (−1)n + 2
n for which n is even lie in Vϵ(1). In particular Vϵ(x) contains finitely many

(at most 2N − 2) points of A. But if x were a limit point of A, every neighborhood of x would
contain infinitely many points of A. Ergo, x is not a limit point of A.
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(b) The set is not open; observe that any neighborhood Vϵ(2) contains a point x such that
x > 3

2 , which therefore is not in A. So there is no ϵ > 0 such that Vϵ(2) lies in A. Hence A is
not open. The set A is also not closed, since −1 is a limit point not contained in A.

(c) All of the points of A except for 1 are isolated points, by the argument in part (a).

Next we consider B = {x ∈ Q : 0 < x < 1}.

(a) The set of limit points of B is the entire closed interval [0, 1]. For let q ∈ [0, 1]. Then we
claim that any ϵ-neighborhood Vϵ(q) contains a rational number not equal to q in (0, 1). For if
q ̸= 0, 1, there is some ϵ′ < ϵ such that Vϵ′(q) ⊂ (0, 1). Then there is a rational number r ̸= q
in the interval (q − ϵ′, q) which is an element of (0, 1) and therefore of B, and r ∈ (q − ϵ′, q) ⊂
Vϵ′(q) ⊂ Vϵ(q), so every neighborhood of q contains a point of B other than q and q is therefore
a limit point of A. Likewise, if q = 0, there is some ϵ′ < ϵ such that (0, ϵ′) ⊂ (0, 1), and there
is a rational number r ̸= q in (0, ϵ′) which therefore also lies in Vϵ(0), so every neighborhood of
0 contains a point of B, hence 0 is a limit point of B. Similarly 1 is a limit point of B. We
conclude that the limit points of B are [0, 1].

(b) The set is neither open nor closed. For not open, observe that every ϵ-neighborhood Vϵ(
1
2)

contains an irrational number, hence is not a subset of B. So 1
2 has no ϵ-neighborhood which is

a subset of B. For not closed, observe that 1 is a limit point of B not contained in B.

(c) There are no isolated points; every point is a limit point, as discussed in part (a).

Problem 3.2.3

(a) The set Q is neither open nor closed. To see that it is not open, consider 0 ∈ Q. Any
Vϵ(0) = (−ϵ, ϵ) contains an irrational number. Thus there does not exist any ϵ such that
Vϵ(0) ⊂ Q. To see that the set is not closed, consider

√
2. Any neighborhood Vϵ(

√
2) contains a

rational number, so
√
2 is a limit point of Q not contained in Q. Hence Q is not closed.

(b) The set N is not open, but is closed. To see that it is not open, consider 0 ∈ N. For any
ϵ > 0, Vϵ(0) contains a point that is not a natural number, hence is not contained in N. So
N is not open. To see that it is closed, notice that every element n ∈ N has a neighborhood
(n − 1

2 , n + 1
2) which contains no other element of N. So every element of N is an isolated

point. Moreover, any x /∈ N has a neighborhood Vϵ(x) containing no natural numbers by letting
n < x < n+ 1 and setting ϵ = min{|x− n|, |x− (n+ 1)|}. So x is not a limit point of N. Ergo
N has no limit points, hence trivially contains all its limit points and is closed.

(c) The set A = {x ∈ R : x ̸= 0} is open but not closed. To see it is open, observe that
A = (−∞, 0) ∪ (0,∞) is the union of two open intervals, hence open. To see it is not closed,
observe that for any ϵ > 0, the neighborhood Vϵ(0) contains a point of A. So 0 is a limit point
of A not contained in A, hence A is not closed.

(d) The set A =
{
1 + 1

4 + 1
9 + · · ·+ 1

n2 : n ∈ N
}

is neither closed nor open. For not open,
observe that any neighborhood Vϵ(1) contains a point not in A. For not closed, let α =

∑∞
n=1

1
n2 .

Then there is a sequence of points (an) in A with an ̸= α converging to α, by taking an =
1 + 1

4 + 1
9 + · · ·+ 1

n2 . So α is a limit point of A not contained in A. Hence A is not closed.



(e) The set A =
{
an = 1 + 1

2 + 1
3 + · · ·+ 1

n : n ∈ N
}

is closed but not open. For not open,
observe that any neighborhood Vϵ(1) contains a point not in A. For not closed, suppose for the
sake of contradiction that α is a limit point of A. Then there is a sequence of points (bn) in A
converging to α which does not contain α as any of its elements, hence is not eventually constant.
By Bolzano-Weierstrass, the sequence (bn) must have a monotone subsequence (bnk

), which also
converges to α because subsequences of convergent sequences all converge to the same limit, and
is also not eventually constant. However, (an) is already in monotone increasing order, which
implies that after possibly deleting repeated terms, (bnk

) appears as some subsequence (anℓ
) of

(an). However, (an) is monotone and unbounded above, hence does not have any convergent
subsequences. This is a contradiction. So A is closed.

Problem 3.2.6

(a) False; consider (∞,
√
2) ∪ (

√
2,∞).

(b) False; let An = [n,∞) for n ∈ N. Each An is closed and A1 ⊃ A2 ⊃ A3 ⊃ . . . , but
∩∞
n=1An = ∅.

(c) True. Let A be open and nonempty. Choose an element a ∈ A. Then there is some ϵ such
that Vϵ(a) ⊆ A, and there is certainly a rational number in Vϵ(a) = (a− ϵ, a+ ϵ). So A contains
a rational number.

(d) False. Consider A = {
√
2} ∪ {

√
2 + 1

n : n ∈ N}. This set A has a single limit point,
√
2,

which it contains; therefore A is closed. The set A is also clearly infinite, and is bounded, since
for all a ∈ A, 0 < a < 4.

(e) True. The Cantor set C is constructed as an intersection of sets Ci. Each Ci is the finite
union of closed intervals, hence closed since the finite union of closed sets is closed. And then
C = ∩∞

i=1Ci is the infinite intersection of closed sets, hence closed since intersections of closed
sets are closed.

Other Problems

Problem 6

(a) Let bn = 1
n! . Then | bn+1

bn
| = | 1

n+1 |, so lim | bn+1
bn

| = 0. Ergo
∑∞

n=0 bn =
∑∞

n=0
1
n! converges

absolutely by the Ratio Test.



(b) We compute that

an = (1 +
1

n
)n

=
n∑

k=0

n!

k!(n− k)!

(
1

n

)k

=
n∑

k=0

n!

(n− k)!

(
1

n

)k 1

k!

=
1

0!
+

n∑
k=1

n(n− 1) · · · (n− k + 1)

nk

1

k!

Observe that for n ≥ 1, n(n−1)···(n−k+1)
nk ≤ 1, so an ≤ 1

0! +
1
1! + · · · + 1

n! = sn. Note that since
(sn) is increasing, this in particular implies an ≤ s for all n ≥ 1.

(c) Notice that

an =
1

0!
+

n∑
k=1

n(n− 1) · · · (n− k + 1)

nk

1

k!

=
1

0!
+

m∑
k=1

n(n− 1) · · · (n− k + 1)

nk

1

k!
+

n∑
k=m+1

n(n− 1) · · · (n− k + 1)

nk

1

k!

≥ 1

0!
+

m∑
k=1

n(n− 1) · · · (n− k + 1)

nk

1

k!

Fix m and call the righthand side tmn . Then as n → ∞, we see that tmn → 1+1+ 1
2!+ · · · 1

m! = sm.
In particular, given any ϵ, we observe that there exists some Nm such that n ≥ Nm implies that
tmn > sm − ϵ

2 . Ergo n ≥ Nm implies in particular that an > sm − ϵ
2 .

(d) Now we complete the proof. Let ϵ > 0. Choose any integer m such that s − ϵ
2 < sm ≤ s,

which certainly exists since the sequence (sn) converges to s. Then choose Nm as in part (c) so
that n ≥ Nm implies an > sm − ϵ

2 . Then in total we have

s ≥ an > sm − ϵ

2
> s− ϵ

2
− ϵ

2
= s− ϵ.

In particular n ≥ Nm implies |an − s| < ϵ. So lim an = s.
This outline is based on the proof given in Rudin’s book Principles of Mathematical Analysis.


