Homework 6 Solutions

October 17, 2023

Section 2.5

Problem 2.5.5

Let (a_{n}) be a bounded sequence with the property that every convergent subsequence converges to the same limit a. Suppose, for the sake of inducing a contradiction, that (a_{n}) does not converge to a. Then there is some $\epsilon>0$ such that for any N a natural number, we can find $n>N$ such that $\left|a_{n}-a\right| \geq \epsilon$. In particular, we may pick a subsequence ($a_{n_{k}}$) of (a_{n}) consisting of terms of distance at least ϵ from a. Now, $\left(a_{n_{k}}\right)$ is a bounded sequence, hence by BolzanoWeierstrass it has a convergent subsequence $\left(a_{n_{j}}\right)$ with limit some real number b. However, ($a_{n_{j}}$) consists solely of points of distance at least ϵ from a, so $|b-a| \geq \epsilon$ and in particular $b \neq a$. So $\left(a_{n_{j}}\right)$ is a subsequence of $\left(a_{n}\right)$ not converging to a. This is a contradiction. So $\lim a_{n}=a$.

Problem 2.5.6

We wish to compute the limit of $\left(b^{\frac{1}{n}}\right)$ for all $b \geq 0$. If $b=0$ this limit obviously exists and is 0 ; similarly if $b=1$ the limit obviously exists and is 1 .

Now consider the case $0<b<1$. We see first that $c_{n}=\left(b^{\frac{1}{n}}\right)$ is positive and bounded above by 1 . Moreover we claim the sequence is increasing. In particular, $c_{n}^{n}=b=c_{n+1}^{n+1}$. Since $c_{n+1}<1$, this implies that $c_{n+1}^{n}>b=c_{n}^{n}$, which in turn implies that $c_{n+1}>c_{n}>b$. So the sequence is bounded monotone, hence convergent. Let the limit be ℓ. Observe that $b \leq \ell \leq 1$ by the order limit theorem. We consider the subsequence $\left(b^{\frac{1}{2 n}}\right)$. By the results of last week's homework, this subsequence converges to $\sqrt{\ell}$. But every subsequence of a convergent sequence converges to the limit of the sequence, so in fact we must have $\ell=\sqrt{\ell}$. This implies $\ell=1$. So $\lim b^{\frac{1}{n}}=1$.

The case that $b>1$ follows by writing $b=\frac{1}{c}$ so that $b=\frac{1}{c^{\frac{1}{n}}}$ and applying the algebraic limit theorem to the quotient. In particular we see that $\lim b^{\frac{1}{n}}=1$ again.

Section 2.6

Problem 2.6.2

(a) The sequence $\left(\frac{(-1)^{n}}{n}\right)$ is convergent, hence Cauchy, but not monotone.
(b) Cauchy sequences are bounded, so every subsequence of a Cauchy sequence is bounded. Hence this is impossible.
(c) Impossible; we claim that a monotone sequence with a Cauchy subsequence must be bounded, hence convergent. To justify this, suppose $\left(a_{n}\right)$ is increasing with a Cauchy subsequence $\left(a_{n_{k}}\right)$. Since Cauchy sequences are bounded there is some M such that $a_{n_{k}}<M$ for all M. Then for any n, there is some $n_{k}>n$, so $a_{n} \leq a_{n_{k}} \leq M$, so $\left(a_{n}\right)$ is also bounded by M. The case for descreasing sequences is similar.
(d) Consider the sequence $\left(1,1, \frac{1}{2}, 2, \frac{1}{3}, 3, \ldots\right)$, which is unbounded but contains the Cauchy sequence $\left(\frac{1}{n}\right)$ as a subsequence.

Problem 2.6.4

Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be Cauchy sequences.
(a) Yes, (c_{n}) where $c_{n}=\left|a_{n}-b_{n}\right|$ is Cauchy. Given $\epsilon>0$, there is some N_{1} such that $n, m \geq N_{1}$ implies $\left|a_{n}-a_{m}\right|<\frac{\epsilon}{2}$ and some N_{2} such that $n, m \geq N_{2}$ implies that $\left|b_{n}-b_{m}\right|<\frac{\epsilon}{2}$. Then for $n, m \geq N=\max \left\{N_{1}, N_{2}\right\}$, we have

$$
\begin{aligned}
\left|a_{n}-b_{n}\right| & \leq\left|a_{n}-a_{m}\right|+\left|a_{m}-b_{m}\right|+\left|b_{m}-b_{n}\right| \\
& <\left|a_{m}-b_{m}\right|+\epsilon .
\end{aligned}
$$

and similarly $\left|a_{m}-b_{m}\right|<\left|a_{n}-b_{n}\right|+\epsilon$, so in total $\left|a_{m}-b_{m}\right|-\epsilon<\left|a_{n}-b_{n}\right|<\left|a_{m}-b_{m}\right|+\epsilon$. In particular $n, m \geq N$ implies $\left|\left|a_{m}-b_{m}\right|-\left|a_{n}-b_{n}\right|\right|<\epsilon$.
(b) The sequence $\left((-1)^{n} a_{n}\right)$ need not be Cauchy. For example, $a_{n}=1$ is a Cauchy sequence but $\left.\left((-1)^{n} a_{n}\right)\right)=\left((-1)^{n}\right)$ is not.
(c) The sequence $\left(\left[\left[a_{n}\right]\right]\right)$ need not be Cauchy; consider the Cauchy sequence $a_{n}=\left(\frac{(-1)^{n}}{n}\right)$, which has $\left(\left[\left[a_{n}\right]\right]\right)=(-1,0,-1,0, \ldots)$.

$1 \quad$ Section 2.7

Problem 2.7.2

(a) $\sum_{n=1}^{\infty} \frac{1}{2^{n}+n}$ converges by observing that $\frac{1}{2^{n}+n}<\frac{1}{2^{n}}$ and applying the Comparison Test.
(b) $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$ converges by the Comparison Test since $\left|\frac{\sin (n)}{n^{2}}\right| \leq \frac{1}{n^{2}}$.
(c) Diverges; notice that the absolute values of the terms are $\frac{n+1}{2 n}$ which converges to $\frac{1}{2}$ rather than 0 .
(d) Diverges. Let $\left(s_{m}\right)$ be the partial sums of the series. Notice that $s_{3 k}>1+\frac{1}{4}+\frac{1}{7}+\cdots+\frac{1}{3 k-2}$. If t_{m} are the partial sums of the series $\sum_{n=1}^{\infty} \frac{1}{3 n-2}$, then $s_{3 k}=t_{k}$. And $\sum_{n=1}^{\infty} \frac{1}{3 n-2}$ clearly diverges, for example by applying limit comparison to $\sum \frac{1}{n}$, so the terms t_{k} are unbounded above, implying that the partial sums $s_{3 k}$ are unbounded above and our original series diverges.
(e) Diverges. Let $\left(s_{m}\right)$ be the partial sums of the series, $\left(t_{m}\right)$ be the sums of the divergent series $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$ and $\left(r_{m}\right)$ be the sums of the convergent series $\sum_{n+1}^{\infty} \frac{1}{(2 n)^{2}}$. (Both of these assertions can be quickly confirmed by limit comparison to the obvious thing.) Then the sums t_{m} are unbounded above and the sums r_{m} are bounded above, say by some M. We have that $s_{2 m}=t_{m}-r_{m}$. Given any natural number N, choose m such that $t_{m}>N+M$, so that $s_{2 m}=t_{m}-r_{m}>N$. This shows the partial sums $s_{2 m}$ are not bounded above. We conclude the series diverges.

Problem 2.7.8

(a) True. Suppose $\sum a_{n}$ converges absolutely, so that $\sum\left|a_{n}\right|$ converges. Then $a_{n} \rightarrow 0$. There is therefore some N such that $n \geq N$ implies that $\left|a_{n}\right|<1$. Then for $n \geq N$, we have that $\left|a_{n}\right|^{2}<\left|a_{n}\right|$, implying by the Comparison Test that $\sum\left|a_{n}\right|^{2}$ converges.
(b) False. Consider $\sum a_{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ and $\left(b_{n}\right)=\left(\frac{(-1)^{n+1}}{\sqrt{n}}\right)$. It's true if you assume absolute convergence, though: $\left(b_{n}\right)$ is bounded by some M and $\left|a_{n} b_{n}\right| \leq M\left|a_{n}\right|$, so $a_{n} b_{n}$ converges by comparison if $\sum\left|a_{n}\right|$ converges.
(c) True. For suppose that $\sum n^{2} a_{n}$ converges. Then $n^{2} a_{n} \rightarrow 0$, so there is some N such that $n \geq N$ implies that $\left|n^{2} a_{n}\right|<1$, or in particular $\left|a_{n}\right|<\frac{1}{n^{2}}$. This implies that $\sum a_{n}$ converges absolutely. So if $\sum a_{n}$ converges conditionally, it must be the case that $\sum n^{2} a_{n}$ diverges.

Other Problems

Problem 4

(a) $\{1,5\}$.
(b) $\left\{0, \pm \frac{\sqrt{3}}{2}\right\}$
(c) $\{0\}$
(d) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}$
(e) All of \mathbb{R}.

Problem 5

(a) Suppose that $a_{1}, \cdots a_{n-1}$ have been chosen as specified, and that a_{n} is the largest integer such that

$$
a_{0}+\frac{a_{1}}{k}+\frac{a_{2}}{k^{2}}+\cdots+\frac{a_{n}}{k^{n}} \leq x
$$

First suppose that $a_{n}<0$. This implies that

$$
a_{0}+\frac{a_{1}}{k}+\frac{a_{2}}{k^{2}}+\cdots+\frac{0}{k^{n}}>x
$$

which is impossible by construction of a_{n-1}. So $a_{n} \geq 0$. Now suppose $a_{n} \geq k$. Then $\frac{a_{n}}{k^{n}}>\frac{k}{k^{n}}=$ $\frac{1}{k^{n-1}}$. This implies that

$$
a_{0}+\frac{a_{1}}{k}+\frac{a_{2}}{k^{2}}+\cdots+\frac{a_{n-1}}{k^{n-1}}+\frac{1}{k^{n-1}} \leq x
$$

so in particular

$$
a_{0}+\frac{a_{1}}{k}+\frac{a_{2}}{k^{2}}+\cdots+\frac{a_{n-1}+1}{k^{n-1}} \leq x
$$

which is impossible, since a_{n-1} was chosen to be the largest integer such that the equation above was satisfied. So $a_{n} \leq k-1$. Hence $0 \leq a_{n} \leq k-1$ for $i \geq 1$.
(b) First, x is clearly an upper bound for $\left\{r_{0}, r_{1}, \ldots\right\}$. Suppose $y<x$. Then we may choose M such that $x-y>\frac{1}{k^{M}}$. Now consider

$$
r_{M}=a_{0}+\frac{a_{1}}{k}+\frac{a_{2}}{k^{2}}+\cdots+\frac{a_{M}}{k^{M}} \leq x .
$$

Since a_{M} is the largest integer for the inequality above is true, we see that $x-r_{M} \leq \frac{1}{k^{M}}$. This implies that $r_{M}>y$. So y is not an upper bound for $\left\{r_{0}, r_{1}, \cdots\right\}$. Therefore since no number less than x is an upper bound for $\left\{r_{0}, r_{1}, \cdots\right\}$, it follows that $x=\sup \left\{r_{0}, r_{1}, \cdots\right\}$.

Now, we observe that the partial sums of $\sum_{n=0}^{\infty} \frac{a_{n}}{k^{n}}$ are the increasing sequence $\left(r_{n}\right)$, bounded above by x. As an increasing bounded sequence converges to the supremum of its terms, we have that $\sum_{n=0}^{\infty} \frac{a_{n}}{k^{n}}=x$.
(c) Let $r_{0}=0$ and for $n>0$ let $r_{n}=0+\frac{k-1}{k}+\frac{k-1}{k^{2}}+\cdots+\frac{k-1}{k^{n}}$. We claim that $\sup \left\{r_{0}, r_{1}, \ldots\right\}$ is equal to 1 . For certainly $r_{n}<1$, so 1 is an upper bound of the set. Furthermore, if $y<1$, we may choose M so that $\frac{1}{k^{M}}<1-y$ so that, since $1-r_{M}=\frac{1}{k^{M}}$, we have $y<r_{M}<1$. So, indeed, y is the supremum of the set, and $\sum_{n=1}^{\infty} \frac{k-1}{k^{n}}=1$.
(d) Let $S=\left\{r_{0}, r_{1}, \ldots\right\}$ and $S^{\prime}=\left\{r_{0}^{\prime}, r_{1}^{\prime}, \ldots\right\}$. Let $x=\sup S=\sup S^{\prime}$. Suppose that $a_{0} \neq a_{0}^{\prime}$. Without loss of generality we may assume $a_{0}<a_{0}^{\prime}$. We observe that

$$
\begin{aligned}
r_{n} & =a_{0}+\frac{a_{1}}{k}+\frac{a_{2}}{k^{2}}+\cdots+\frac{a_{n}}{k^{n}} \\
& \leq a_{0}+\frac{k-1}{k}+\cdots+\frac{k-1}{k^{n-1}}+\frac{k-1}{k^{n}} \\
& <a_{0}+\frac{k-1}{k}+\cdots+\frac{k-1}{k^{n-1}}+\frac{k}{k^{n}} \\
& =a_{0}+\frac{k-1}{k}+\cdots+\frac{k-1}{k^{n-2}}+\frac{1}{k^{n-1}} \\
& =a_{0}+1
\end{aligned}
$$

So in particular $a_{0}+1$ is an upper bound for $\left\{r_{0}, r_{1}, \cdots\right\}$, implying that $x \leq a_{0}+1$. Since $r_{0}^{\prime}=a_{0}^{\prime}$ is an element of S^{\prime} and $x=\sup S^{\prime}$, we see that $a_{0}^{\prime}=r_{0}^{\prime} \leq x \leq a_{0}+1$. Since we are assuming $a_{0} \neq a_{0}^{\prime}$, we must have $a_{0}^{\prime}=a_{0}+1$. So in fact $a_{0}+1=a_{0}^{\prime} \leq x \leq a_{0}+1$, implying that $x=a_{0}^{\prime}=a_{0}+1$.

However, recall that by assumption, there is some $i \geq 1$ such that $a_{i}<k-1$. Choose the smallest such i. Then we have

$$
r_{i}=a_{0}+\frac{k-1}{k}+\frac{k-1}{k^{2}}+\cdots+\frac{k-1}{k^{i-1}}+\frac{a_{i}}{k^{i}}
$$

By the same argument as above, for $n>i$,

$$
\begin{aligned}
r_{n} & <a_{0}+\frac{k-1}{k}+\frac{k-1}{k^{2}}+\cdots+\frac{k-1}{k^{i-1}}+\frac{a_{i}}{k^{i}}+\frac{1}{k^{i}} \\
& =a_{0}+\frac{k-1}{k}+\frac{k-1}{k^{2}}+\cdots+\frac{k-1}{k^{i-1}}+\frac{a_{i}+1}{k^{i}} \\
& <a_{0}+1-\frac{k-\left(a_{i}+1\right)}{k^{i}}
\end{aligned}
$$

This implies that $x=\sup S$ has $x \leq a_{0}+1-\frac{k-\left(a_{i}+1\right)}{k^{2}}<a_{0}+1$. This is a contradiction. So in fact $a_{0}=a_{0}^{\prime}$. Repeating the argument proves that $a_{i}=a_{i}^{\prime}$.

