
Homework 6 Solutions

October 17, 2023

Section 2.5

Problem 2.5.5

Let (an) be a bounded sequence with the property that every convergent subsequence converges
to the same limit a. Suppose, for the sake of inducing a contradiction, that (an) does not
converge to a. Then there is some ϵ > 0 such that for any N a natural number, we can find
n > N such that |an − a| ≥ ϵ. In particular, we may pick a subsequence (ank

) of (an) consisting
of terms of distance at least ϵ from a. Now, (ank

) is a bounded sequence, hence by Bolzano-
Weierstrass it has a convergent subsequence (anj ) with limit some real number b. However, (anj )
consists solely of points of distance at least ϵ from a, so |b− a| ≥ ϵ and in particular b ̸= a. So
(anj ) is a subsequence of (an) not converging to a. This is a contradiction. So lim an = a.

Problem 2.5.6

We wish to compute the limit of (b
1
n ) for all b ≥ 0. If b = 0 this limit obviously exists and is 0;

similarly if b = 1 the limit obviously exists and is 1.
Now consider the case 0 < b < 1. We see first that cn = (b

1
n ) is positive and bounded

above by 1. Moreover we claim the sequence is increasing. In particular, cnn = b = cn+1
n+1. Since

cn+1 < 1, this implies that cnn+1 > b = cnn, which in turn implies that cn+1 > cn > b. So the
sequence is bounded monotone, hence convergent. Let the limit be ℓ. Observe that b ≤ ℓ ≤ 1
by the order limit theorem. We consider the subsequence (b

1
2n ). By the results of last week’s

homework, this subsequence converges to
√
ℓ. But every subsequence of a convergent sequence

converges to the limit of the sequence, so in fact we must have ℓ =
√
ℓ. This implies ℓ = 1. So

lim b
1
n = 1.

The case that b > 1 follows by writing b = 1
c so that b = 1

c
1
n
and applying the algebraic limit

theorem to the quotient. In particular we see that lim b
1
n = 1 again.

Section 2.6

Problem 2.6.2

(a) The sequence ( (−1)n

n ) is convergent, hence Cauchy, but not monotone.

(b) Cauchy sequences are bounded, so every subsequence of a Cauchy sequence is bounded.
Hence this is impossible.
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(c) Impossible; we claim that a monotone sequence with a Cauchy subsequence must be
bounded, hence convergent. To justify this, suppose (an) is increasing with a Cauchy sub-
sequence (ank

). Since Cauchy sequences are bounded there is some M such that ank
< M for

all M . Then for any n, there is some nk > n, so an ≤ ank
≤ M , so (an) is also bounded by M .

The case for descreasing sequences is similar.

(d) Consider the sequence (1, 1, 12 , 2,
1
3 , 3, . . . ), which is unbounded but contains the Cauchy

sequence
(
1
n

)
as a subsequence.

Problem 2.6.4

Let (an) and (bn) be Cauchy sequences.

(a) Yes, (cn) where cn = |an−bn| is Cauchy. Given ϵ > 0, there is some N1 such that n,m ≥ N1

implies |an − am| < ϵ
2 and some N2 such that n,m ≥ N2 implies that |bn − bm| < ϵ

2 . Then for
n,m ≥ N = max{N1, N2}, we have

|an − bn| ≤ |an − am|+ |am − bm|+ |bm − bn|
< |am − bm|+ ϵ.

and similarly |am − bm| < |an − bn|+ ϵ, so in total |am − bm| − ϵ < |an − bn| < |am − bm|+ ϵ. In
particular n,m ≥ N implies ||am − bm| − |an − bn|| < ϵ.

(b) The sequence ((−1)nan) need not be Cauchy. For example, an = 1 is a Cauchy sequence
but ((−1)nan)) = ((−1)n) is not.

(c) The sequence ([[an]]) need not be Cauchy; consider the Cauchy sequence an =
(
(−1)n

n

)
,

which has ([[an]]) = (−1, 0,−1, 0, . . . ).

1 Section 2.7

Problem 2.7.2

(a)
∑∞

n=1
1

2n+n converges by observing that 1
2n+n < 1

2n and applying the Comparison Test.

(b)
∑∞

n=1
sin(n)
n2 converges by the Comparison Test since

∣∣∣ sin(n)n2

∣∣∣ ≤ 1
n2 .

(c) Diverges; notice that the absolute values of the terms are n+1
2n which converges to 1

2 rather
than 0.

(d) Diverges. Let (sm) be the partial sums of the series. Notice that s3k > 1+ 1
4+

1
7+· · ·+ 1

3k−2 .

If tm are the partial sums of the series
∑∞

n=1
1

3n−2 , then s3k = tk. And
∑∞

n=1
1

3n−2 clearly

diverges, for example by applying limit comparison to
∑ 1

n , so the terms tk are unbounded
above, implying that the partial sums s3k are unbounded above and our original series diverges.



(e) Diverges. Let (sm) be the partial sums of the series, (tm) be the sums of the divergent
series

∑∞
n=1

1
2n−1 and (rm) be the sums of the convergent series

∑∞
n+1

1
(2n)2

. (Both of these

assertions can be quickly confirmed by limit comparison to the obvious thing.) Then the sums
tm are unbounded above and the sums rm are bounded above, say by some M . We have that
s2m = tm − rm. Given any natural number N , choose m such that tm > N + M , so that
s2m = tm − rm > N . This shows the partial sums s2m are not bounded above. We conclude the
series diverges.

Problem 2.7.8

(a) True. Suppose
∑

an converges absolutely, so that
∑

|an| converges. Then an → 0. There
is therefore some N such that n ≥ N implies that |an| < 1. Then for n ≥ N , we have that
|an|2 < |an|, implying by the Comparison Test that

∑
|an|2 converges.

(b) False. Consider
∑

an =
∑∞

n=1
(−1)n+1

√
n

and (bn) =
(
(−1)n+1

√
n

)
. It’s true if you assume

absolute convergence, though: (bn) is bounded by someM and |anbn| ≤ M |an|, so anbn converges
by comparison if

∑
|an| converges.

(c) True. For suppose that
∑

n2an converges. Then n2an → 0, so there is some N such that
n ≥ N implies that |n2an| < 1, or in particular |an| < 1

n2 . This implies that
∑

an converges
absolutely. So if

∑
an converges conditionally, it must be the case that

∑
n2an diverges.

Other Problems

Problem 4

(a) {1, 5}.

(b) {0,±
√
3
2 }

(c) {0}

(d) { 1
n : n ∈ N} ∪ {0}

(e) All of R.

Problem 5

(a) Suppose that a1, · · · an−1 have been chosen as specified, and that an is the largest integer
such that

a0 +
a1
k

+
a2
k2

+ · · ·+ an
kn

≤ x

First suppose that an < 0. This implies that

a0 +
a1
k

+
a2
k2

+ · · ·+ 0

kn
> x



which is impossible by construction of an−1. So an ≥ 0. Now suppose an ≥ k. Then an
kn > k

kn =
1

kn−1 . This implies that

a0 +
a1
k

+
a2
k2

+ · · ·+ an−1

kn−1
+

1

kn−1
≤ x

so in particular

a0 +
a1
k

+
a2
k2

+ · · ·+ an−1 + 1

kn−1
≤ x

which is impossible, since an−1 was chosen to be the largest integer such that the equation above
was satisfied. So an ≤ k − 1. Hence 0 ≤ an ≤ k − 1 for i ≥ 1.

(b) First, x is clearly an upper bound for {r0, r1, . . . }. Suppose y < x. Then we may choose
M such that x− y > 1

kM
. Now consider

rM = a0 +
a1
k

+
a2
k2

+ · · ·+ aM
kM

≤ x.

Since aM is the largest integer for the inequality above is true, we see that x− rM ≤ 1
kM

. This
implies that rM > y. So y is not an upper bound for {r0, r1, · · · }. Therefore since no number
less than x is an upper bound for {r0, r1, · · · }, it follows that x = sup{r0, r1, · · · }.

Now, we observe that the partial sums of
∑∞

n=0
an
kn are the increasing sequence (rn), bounded

above by x. As an increasing bounded sequence converges to the supremum of its terms, we
have that

∑∞
n=0

an
kn = x.

(c) Let r0 = 0 and for n > 0 let rn = 0+ k−1
k + k−1

k2
+ · · ·+ k−1

kn . We claim that sup{r0, r1, . . . }
is equal to 1. For certainly rn < 1, so 1 is an upper bound of the set. Furthermore, if y < 1, we
may choose M so that 1

kM
< 1− y so that, since 1− rM = 1

kM
, we have y < rM < 1. So, indeed,

y is the supremum of the set, and
∑∞

n=1
k−1
kn = 1.

(d) Let S = {r0, r1, . . . } and S′ = {r′0, r′1, . . . }. Let x = supS = supS′. Suppose that a0 ̸= a′0.
Without loss of generality we may assume a0 < a′0. We observe that

rn = a0 +
a1
k

+
a2
k2

+ · · ·+ an
kn

≤ a0 +
k − 1

k
+ · · ·+ k − 1

kn−1
+

k − 1

kn

< a0 +
k − 1

k
+ · · ·+ k − 1

kn−1
+

k

kn

= a0 +
k − 1

k
+ · · ·+ k − 1

kn−2
+

1

kn−1

= a0 + 1

So in particular a0 + 1 is an upper bound for {r0, r1, · · · }, implying that x ≤ a0 + 1. Since
r′0 = a′0 is an element of S′ and x = supS′, we see that a′0 = r′0 ≤ x ≤ a0 + 1. Since we are
assuming a0 ̸= a′0, we must have a′0 = a0+1. So in fact a0+1 = a′0 ≤ x ≤ a0+1, implying that
x = a′0 = a0 + 1.

However, recall that by assumption, there is some i ≥ 1 such that ai < k − 1. Choose the
smallest such i. Then we have

ri = a0 +
k − 1

k
+

k − 1

k2
+ · · ·+ k − 1

ki−1
+

ai
ki



By the same argument as above, for n > i,

rn < a0 +
k − 1

k
+

k − 1

k2
+ · · ·+ k − 1

ki−1
+

ai
ki

+
1

ki

= a0 +
k − 1

k
+

k − 1

k2
+ · · ·+ k − 1

ki−1
+

ai + 1

ki

< a0 + 1− k − (ai + 1)

ki

This implies that x = supS has x ≤ a0 + 1− k−(ai+1)
ki

< a0 + 1. This is a contradiction. So
in fact a0 = a′0. Repeating the argument proves that ai = a′i.


