MATH 311H: Homework 6

Due: October 16 at 5 pm

1. Upcoming office hours are Monday October 9 and Thursday October 12 10-11 am in LSH B-102D.
2. Read Sections 3.1-2 in Abbott.
3. Do Abbott Exercises 2.5.5, 2.5.6*, 2.6.2*, 2.6.4, 2.7.2, 2.7.8
4. For each of the sequences below, what is the set of subsequential limits? (You don't have to prove your answer, just state it.)
(a) $a_{n}=3+2(-1)^{n}$
(b) $b_{n}=\sin \left(\frac{n \pi}{3}\right)$
(c) $c_{n}=n \cos \left(\frac{n \pi}{4}\right)$
(d) $d_{n}=\left(1, \frac{1}{2}, 1, \frac{1}{3}, \frac{1}{2}, 1, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1, \ldots\right)$
(e) $\left(r_{n}\right)$ the enumeration of the rationals constructed in class.
5. Existence and near-uniqueness of decimal expansions in arbitrary base. ${ }^{*}$ Given $x \in \mathbb{R}$ with $x>0$ and an integer $k \geq 2$, define $a_{0}, a_{1}, a_{2}, \ldots$ recursively by setting a_{0} to be the largest integer less than or equal to x and a_{n} to be the largest integer such that

$$
a_{0}+\frac{a_{1}}{k}+\frac{a_{2}}{k^{2}}+\cdots+\frac{a_{n}}{k^{n}} \leq x
$$

(a) Show that $0 \leq a_{i} \leq k-1$ for all $i \geq 1$.
(b) Let $r_{n}=a_{0}+\frac{a_{1}}{k}+\cdots+\frac{a_{n}}{k^{n}}$. Show that $\sup \left\{r_{0}, r_{1}, \ldots\right\}=x$, and use this to conclude that $\sum_{n=0}^{\infty} \frac{a_{k}}{k^{n}}=x$.
(c) Confirm that $\sum_{n=1}^{\infty} \frac{k-1}{k^{n}}=1$. This is the general case of $.9999 \ldots=1$.
(d) Show that if we have sequences of integers $\left(a_{0}, a_{1}, \ldots\right)$ and $\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots\right)$ such that

- $0 \leq a_{i} \leq k-1$ and $0 \leq a_{i}^{\prime} \leq k-1$ for all i.
- If r_{1} and r_{i}^{\prime} are the sums defined in part (b) for a_{i} and a_{i}^{\prime} respectively, then $\sup \left\{r_{0}, r_{1}, \ldots\right\}=\sup \left\{r_{0}^{\prime}, r_{1}^{\prime}, \ldots\right\}$.
- For each N there exists $n>N$ and $m>N$ such that $a_{n} \neq k-1$ and $a_{m}^{\prime} \neq k-1$.
then $a_{i}=a_{i}^{\prime}$ for all i. This shows uniqueness of decimal expansions apart from trailing strings of $k-1$'s.
Hint: For the last part, it suffices to give an argument that $a_{0}=a_{0}^{\prime}$; after that, the logic for each successive term follows by induction.

