MATH 311H: Homework 6

Due: October 16 at 5 pm

- 1. Upcoming office hours are Monday October 9 and Thursday October 12 10-11 am in LSH B-102D.
- 2. Read Sections 3.1-2 in Abbott.
- 3. Do Abbott Exercises 2.5.5, 2.5.6*, 2.6.2*, 2.6.4, 2.7.2, 2.7.8
- 4. For each of the sequences below, what is the set of subsequential limits? (You don't have to prove your answer, just state it.)
 - (a) $a_n = 3 + 2(-1)^n$
 - (b) $b_n = \sin(\frac{n\pi}{3})$
 - (c) $c_n = n \cos(\frac{n\pi}{4})$
 - (d) $d_n = \left(1, \frac{1}{2}, 1, \frac{1}{3}, \frac{1}{2}, 1, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1, \dots\right)$
 - (e) (r_n) the enumeration of the rationals constructed in class.
- 5. Existence and near-uniqueness of decimal expansions in arbitrary base.* Given $x \in \mathbb{R}$ with x > 0 and an integer $k \ge 2$, define a_0, a_1, a_2, \ldots recursively by setting a_0 to be the largest integer less than or equal to x and a_n to be the largest integer such that

$$a_0 + \frac{a_1}{k} + \frac{a_2}{k^2} + \dots + \frac{a_n}{k^n} \le x.$$

- (a) Show that $0 \le a_i \le k 1$ for all $i \ge 1$.
- (b) Let $r_n = a_0 + \frac{a_1}{k} + \dots + \frac{a_n}{k^n}$. Show that $\sup\{r_0, r_1, \dots\} = x$, and use this to conclude that $\sum_{n=0}^{\infty} \frac{a_k}{k^n} = x$.
- (c) Confirm that $\sum_{n=1}^{\infty} \frac{k-1}{k^n} = 1$. This is the general case of .9999... = 1.
- (d) Show that if we have sequences of integers $(a_0, a_1, ...)$ and $(a'_0, a'_1, ...)$ such that
 - $0 \le a_i \le k-1$ and $0 \le a'_i \le k-1$ for all i.
 - If r_1 and r'_i are the sums defined in part (b) for a_i and a'_i respectively, then $\sup\{r_0, r_1, \ldots\} = \sup\{r'_0, r'_1, \ldots\}.$
 - For each N there exists n > N and m > N such that $a_n \neq k-1$ and $a'_m \neq k-1$.

then $a_i = a'_i$ for all *i*. This shows uniqueness of decimal expansions apart from trailing strings of k - 1's.

Hint: For the last part, it suffices to give an argument that $a_0 = a'_0$; after that, the logic for each successive term follows by induction.