
Homework 5 Solutions

September 28, 2023

Section 2.3

2.3.1

(a) Let xn ≥ 0, and suppose that xn → 0. For ϵ > 0, there is a natural number N such that
n ≥ N implies that |xn − 0| = xn < ϵ2. So, n ≥ N implies that

√
xn < ϵ, and in particular that

|√xn − 0| < ϵ. Hence
√
xn → 0.

(b) Let xn → x. Observe that xn − x = (
√
xn −

√
x)(

√
xn +

√
x). So we have

√
xn −

√
x = (xn − x)

1
√
xn +

√
x

First choose N1 so that n ≥ N1 implies that x
4 < xn by setting ϵ0 = 3x

4 in the definition of

convergence. Then for n ≥ N2 we have
√
x
2 <

√
xn, and in particular 3

2

√
x <

√
xn +

√
x. Now

given ϵ > 0, choose N2 such that n ≥ N2 implies that |xn − x| < 3
2

√
xϵ. Then we have that

n ≥ max{N1, N2} implies that

|
√
xn −

√
x| = |xn − x|

∣∣∣∣ 1
√
xn +

√
x

∣∣∣∣ < 3

2

√
xϵ

(
1

3
2

√
x

)
= ϵ.

2.3.3

We have xn ≤ yn ≤ zn with limxn = lim zn = ℓ. Note that we can’t use the order limit theorem
directly because we don’t yet know that yn converges. However, let ϵ > 0. There exists N1 such
that n ≥ N1 implies that |xn − ℓ| < ϵ and in particular that ℓ − ϵ < xn. Furthermore there
exists N2 such that n ≥ N2 implies that |zn − ℓ| < ϵ, and in particular zn < ℓ+ ϵ. We see that
for n ≥ N = max{N1, N2} we have

ℓ− ϵ < xn ≤ yn ≤ zn ≤ ℓ+ ϵ

and in particular |xn − ℓ| < ϵ. So xn → ℓ.

2.3.5

Given sequences (xn) and (yn), we take (zn) to be the shuffled sequence (x1, y1, x2, y2, . . . ) with
z2n−1 = xn and z2n = yn. First assume that limxn = a = lim yn. Then for any ϵ > 0 there exists
N1 such that n ≥ N1 implies that |xn−a| < ϵ and N2 such that n ≥ N2 implies that |yn−a| < ϵ.
Now let n ≥ N = max{2N1, 2N2}. If n is odd, zn = xn+1

2
, so since n+1

2 ≥ 2N1+2
2 > N1, we have

1



that |zn − a| = |xn − a| < ϵ. Similarly if n is even zn = yn
2
, so since n

2 ≥ 2N2
2 = N2, we have

that |zn − a| = |yn
2
− a| < ϵ. So in either case n ≥ N implies that |zn − a| < ϵ, and we conclude

that zn → a.
Now assume that lim zn = a for some a. Then for any ϵ > 0 there exists N such that n ≥ N

implies that |zn − a| < ϵ. Now for n ≥ N , observe that xn = z2n−1. If n ≥ N , we also have that
2n− 1 ≥ N , so for n ≥ N we have |xn − a| = |z2n−1 − a| < ϵ. Hence xn → a. Likewise if n ≥ N
then |yn − a| = |z2n − a| < ϵ, so yn → a.

2.3.10

(a) False! Let an = (−1)n, bn = (−1)n. Both (an) and (bn) diverge, but their difference
an − bn = 0 is a constant sequence converging to 0.

(b) True. Suppose that bn → b. Let ϵ > 0, then there exists N such that n ≥ N implies that
|bn − b| < ϵ. Now by the Triangle Inequality we have

|bn| = |(bn − b) + b| ≤ |bn − b|+ |b|

so in particular |bn|− |b| ≤ |bn− b|. By the same logic |b|− |bn| ≤ |bn− b|. Therefore we see that
||bn| − |b|| ≤ |bn − b|. In particular, if n ≥ N , we have ||bn| − |b|| ≤ |bn − b| < ϵ. Ergo |bn| → |b|.

(c) True. Let lim an = a and lim bn − an → 0. Then by the algebraic limit theorem, lim bn =
lim(bn − an + an) = lim(bn − an) + lim an = 0 + a = a.

(d) True. Let an → 0. Then for any ϵ > 0, there exists N such that n ≥ N implies that
|an| < ϵ. So for n ≥ N , we have |bn − b| < |an| < ϵ. We conclude that bn → b.

1 Section 2.4

2.4.1

(a) Let x1 = 3 and xn+1 =
1

4−xn
. First we claim that 0 ≤ xn ≤ 3 for all n. This is clearly true

for the base case x1 = 3. For the inductive step, suppose we know that 0 ≤ xn ≤ 3. Then since
xn ≤ 3, we have that 4 − xn is positive, so xn+1 = 1

4−xn
> 0. Moreover, also since xn ≤ 3, we

have that 4 − xn ≥ 1 > 1
3 , so xn+1 = 1

4−xn
< 3. So 0 ≤ xn+1 ≤ 3. In particular, the sequence

(xn) is bounded below by 0.
Now we claim that (xn) is decreasing; that is, we claim that xn ≥ x + n+ 1 for all n. For

the base case, we have x1 = 3 ≥ 1 = x2. Now suppose that xn ≥ xn+1. Then 4−xn ≤ 4−xn+1.
Since by the first part both numbers are positive, it follows that

xn+1 =
1

4− xn
≥ 1

4− xn+1
= xn+2

and thus by induction the sequence is decreasing as desired. As (xn) is bounded below and
decreasing, limxn = x exists.

(b) The sequences (xn) and (xn+1) are the same except for being shifted by an index. If one
converges the other converges as well to the same limit.



(c) Taking the limit of both sides using the algebraic limit theorem, we obtain x = 1
4−x , or

x(4−x) = 1. We rearrange to 0 = x2−4x+1. From the quadratic formula, the solutions to this
equation are 2 ±

√
3. Since we are plainly looking for a number less than x2 = 1, we conclude

that limxn = 2−
√
3.

2.4.6

(a) Observe that (x− y)2 = x2 − 2xy + y2 ≥ 0, so x2 + y2 ≥ 2xy. This implies that

(x+ y)2 = x2 + 2xy + y2 ≥ 4xy.

Taking the square root of both sides of this equation shows that x + y ≥ 2
√
xy, implying that

indeed x+y
2 ≥ √

xy.

(b) We have xn+1 =
√
xnyn and yn+1 = xn+yn

2 , and we start with 0 ≤ x1 ≤ y1. We claim
that for any n, xn ≤ xn+1 ≤ yn+1 ≤ yn. For the base case, let n = 1. Then x2 =

√
x1y1 ≥ x1

since x1 ≤ y1. Likewise y2 = x1+y1
2 ≤ y1. Finally, x2 ≤ y2 by part (a). We conclude that

x1 ≤ x2 ≤ y2 ≤ y1. The inductive step follows by identical logic.

Now, we have (xn) increasing and bounded above by y1 (or any yn) and yn decreasing and
bounded below by 0 (or any xn). We conclude both sequences converge. Thus we may use the
Algebraic Limit Theorems and Exercise 2.3.1 to conclude that if limxn = x and lim yn = y,
then x =

√
xy and y = x+y

2 . Rearranging either equation gives x = y.

2.4.8

(b) For the series Σ∞
n=1

1
n(n+1) , observe that

1

n(n− 1)
=

1

n
− 1

n+ 1
.

Therefore the partial sums of the series are of the form

sm =
1

1(2)
+

1

2(3)
+ · · ·+ 1

m(m+ 1)

=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

m
− 1

m+ 1

)
= 1− 1

m

We see that Σ∞
n=1

1
n(n+1) = 1.

(c) For the series Σ∞
n=1 log

(
n+1
n

)
, observe that

log

(
n+ 1

n

)
= log(n+ 1)− log(n).



Therefore the partial sums of the series are of the form

sm = log

(
2

1

)
+ log

(
3

2

)
+ · · ·+ log

(
m+ 1

m

)
= (log(2)− log(1)) + (log(3)− log(2)) + · · ·+ (log(m+ 1)− log(m))

= log(m)− log(1)

= log(m)− 0

= log(m)

Since log(m) grows unboundedly as m grows, the series diverges (more precisely, “diverges to
infinity.”

2 Other Problems

Problem 4

(a) Let (an) be a sequence with an ̸= 0 such that
∣∣∣an+1

an

∣∣∣ = L < 1. Choose a real number k with

L < k < 1. Then if ϵ = k − L, there is some N such that n ≥ N implies that
∣∣∣∣∣∣an+1

an

∣∣∣− L
∣∣∣ < ϵ,

implying that
∣∣∣an+1

an

∣∣∣ < L+ ϵ = k. In particular for n ≥ N , we have |an+1|
|an| < k, or in other words

|an+1| < k|an|. Applying this relationship inductively we see that 0 ≤ |an+N | < kn|aN |. Since
kn → 0, we have that kn|aN | → 0. Hence by the squeeze theorem |an+N | → 0. Reindexing this
becomes |an| → 0. But in general if |b| → 0 then b → 0 (exercise!) so we see that an → 0.

(b) Let bn = an

np for |a| < 1 and p > 0. Then we have∣∣∣∣bn+1

bn

∣∣∣∣ = |a| · np

(n+ 1)p

and the limit of this term as n → ∞ is |a| < 1. So lim bn = 0 by part (a).

(c) Let cn = an

n! . Then we have ∣∣∣∣cn+1

cn

∣∣∣∣ = |a|
n

and the limit of this term as n → ∞ is 0 < 1. So lim cn = 0 by part (a).


