Homework 5 Solutions

September 28, 2023

Section 2.3

2.3.1

(a) Let $x_{n} \geq 0$, and suppose that $x_{n} \rightarrow 0$. For $\epsilon>0$, there is a natural number N such that $n \geq N$ implies that $\left|x_{n}-0\right|=x_{n}<\epsilon^{2}$. So, $n \geq N$ implies that $\sqrt{x_{n}}<\epsilon$, and in particular that $\left|\sqrt{x_{n}}-0\right|<\epsilon$. Hence $\sqrt{x_{n}} \rightarrow 0$.
(b) Let $x_{n} \rightarrow x$. Observe that $x_{n}-x=\left(\sqrt{x_{n}}-\sqrt{x}\right)\left(\sqrt{x_{n}}+\sqrt{x}\right)$. So we have

$$
\sqrt{x_{n}}-\sqrt{x}=\left(x_{n}-x\right) \frac{1}{\sqrt{x_{n}}+\sqrt{x}}
$$

First choose N_{1} so that $n \geq N_{1}$ implies that $\frac{x}{4}<x_{n}$ by setting $\epsilon_{0}=\frac{3 x}{4}$ in the definition of convergence. Then for $n \geq N_{2}$ we have $\frac{\sqrt{x}}{2}<\sqrt{x_{n}}$, and in particular $\frac{3}{2} \sqrt{x}<\sqrt{x_{n}}+\sqrt{x}$. Now given $\epsilon>0$, choose N_{2} such that $n \geq N_{2}$ implies that $\left|x_{n}-x\right|<\frac{3}{2} \sqrt{x} \epsilon$. Then we have that $n \geq \max \left\{N_{1}, N_{2}\right\}$ implies that

$$
\left|\sqrt{x_{n}}-\sqrt{x}\right|=\left|x_{n}-x\right|\left|\frac{1}{\sqrt{x_{n}}+\sqrt{x}}\right|<\frac{3}{2} \sqrt{x} \epsilon\left(\frac{1}{\frac{3}{2} \sqrt{x}}\right)=\epsilon .
$$

2.3.3

We have $x_{n} \leq y_{n} \leq z_{n}$ with $\lim x_{n}=\lim z_{n}=\ell$. Note that we can't use the order limit theorem directly because we don't yet know that y_{n} converges. However, let $\epsilon>0$. There exists N_{1} such that $n \geq N_{1}$ implies that $\left|x_{n}-\ell\right|<\epsilon$ and in particular that $\ell-\epsilon<x_{n}$. Furthermore there exists N_{2} such that $n \geq N_{2}$ implies that $\left|z_{n}-\ell\right|<\epsilon$, and in particular $z_{n}<\ell+\epsilon$. We see that for $n \geq N=\max \left\{N_{1}, N_{2}\right\}$ we have

$$
\ell-\epsilon<x_{n} \leq y_{n} \leq z_{n} \leq \ell+\epsilon
$$

and in particular $\left|x_{n}-\ell\right|<\epsilon$. So $x_{n} \rightarrow \ell$.

2.3.5

Given sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$, we take $\left(z_{n}\right)$ to be the shuffled sequence $\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots\right)$ with $z_{2 n-1}=x_{n}$ and $z_{2 n}=y_{n}$. First assume that $\lim x_{n}=a=\lim y_{n}$. Then for any $\epsilon>0$ there exists N_{1} such that $n \geq N_{1}$ implies that $\left|x_{n}-a\right|<\epsilon$ and N_{2} such that $n \geq N_{2}$ implies that $\left|y_{n}-a\right|<\epsilon$. Now let $n \geq N=\max \left\{2 N_{1}, 2 N_{2}\right\}$. If n is odd, $z_{n}=x_{\frac{n+1}{2}}$, so since $\frac{n+1}{2} \geq \frac{2 N_{1}+2}{2}>N_{1}$, we have
that $\left|z_{n}-a\right|=\left|x_{n}-a\right|<\epsilon$. Similarly if n is even $z_{n}=y_{\frac{n}{2}}$, so since $\frac{n}{2} \geq \frac{2 N_{2}}{2}=N_{2}$, we have that $\left|z_{n}-a\right|=\left|y_{\frac{n}{2}}-a\right|<\epsilon$. So in either case $n \geq N$ implies that $\left|z_{n}-a\right|<\epsilon$, and we conclude that $z_{n} \rightarrow a$.

Now assume that $\lim z_{n}=a$ for some a. Then for any $\epsilon>0$ there exists N such that $n \geq N$ implies that $\left|z_{n}-a\right|<\epsilon$. Now for $n \geq N$, observe that $x_{n}=z_{2 n-1}$. If $n \geq N$, we also have that $2 n-1 \geq N$, so for $n \geq N$ we have $\left|x_{n}-a\right|=\left|z_{2 n-1}-a\right|<\epsilon$. Hence $x_{n} \rightarrow a$. Likewise if $n \geq N$ then $\left|y_{n}-a\right|=\left|z_{2 n}-a\right|<\epsilon$, so $y_{n} \rightarrow a$.

2.3.10

(a) False! Let $a_{n}=(-1)^{n}$, $b_{n}=(-1)^{n}$. Both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ diverge, but their difference $a_{n}-b_{n}=0$ is a constant sequence converging to 0 .
(b) True. Suppose that $b_{n} \rightarrow b$. Let $\epsilon>0$, then there exists N such that $n \geq N$ implies that $\left|b_{n}-b\right|<\epsilon$. Now by the Triangle Inequality we have

$$
\left|b_{n}\right|=\left|\left(b_{n}-b\right)+b\right| \leq\left|b_{n}-b\right|+|b|
$$

so in particular $\left|b_{n}\right|-|b| \leq\left|b_{n}-b\right|$. By the same logic $|b|-\left|b_{n}\right| \leq\left|b_{n}-b\right|$. Therefore we see that $\left|\left|b_{n}\right|-|b|\right| \leq\left|b_{n}-b\right|$. In particular, if $n \geq N$, we have $\left|\left|b_{n}\right|-|b|\right| \leq\left|b_{n}-b\right|<\epsilon$. Ergo $\left|b_{n}\right| \rightarrow|b|$.
(c) True. Let $\lim a_{n}=a$ and $\lim b_{n}-a_{n} \rightarrow 0$. Then by the algebraic limit theorem, $\lim b_{n}=$ $\lim \left(b_{n}-a_{n}+a_{n}\right)=\lim \left(b_{n}-a_{n}\right)+\lim a_{n}=0+a=a$.
(d) True. Let $a_{n} \rightarrow 0$. Then for any $\epsilon>0$, there exists N such that $n \geq N$ implies that $\left|a_{n}\right|<\epsilon$. So for $n \geq N$, we have $\left|b_{n}-b\right|<\left|a_{n}\right|<\epsilon$. We conclude that $b_{n} \rightarrow b$.

$1 \quad$ Section 2.4

2.4 .1

(a) Let $x_{1}=3$ and $x_{n+1}=\frac{1}{4-x_{n}}$. First we claim that $0 \leq x_{n} \leq 3$ for all n. This is clearly true for the base case $x_{1}=3$. For the inductive step, suppose we know that $0 \leq x_{n} \leq 3$. Then since $x_{n} \leq 3$, we have that $4-x_{n}$ is positive, so $x_{n+1}=\frac{1}{4-x_{n}}>0$. Moreover, also since $x_{n} \leq 3$, we have that $4-x_{n} \geq 1>\frac{1}{3}$, so $x_{n+1}=\frac{1}{4-x_{n}}<3$. So $0 \leq x_{n+1} \leq 3$. In particular, the sequence $\left(x_{n}\right)$ is bounded below by 0 .

Now we claim that $\left(x_{n}\right)$ is decreasing; that is, we claim that $x_{n} \geq x+n+1$ for all n. For the base case, we have $x_{1}=3 \geq 1=x_{2}$. Now suppose that $x_{n} \geq x_{n+1}$. Then $4-x_{n} \leq 4-x_{n+1}$. Since by the first part both numbers are positive, it follows that

$$
x_{n+1}=\frac{1}{4-x_{n}} \geq \frac{1}{4-x_{n+1}}=x_{n+2}
$$

and thus by induction the sequence is decreasing as desired. As $\left(x_{n}\right)$ is bounded below and decreasing, $\lim x_{n}=x$ exists.
(b) The sequences $\left(x_{n}\right)$ and $\left(x_{n+1}\right)$ are the same except for being shifted by an index. If one converges the other converges as well to the same limit.
(c) Taking the limit of both sides using the algebraic limit theorem, we obtain $x=\frac{1}{4-x}$, or $x(4-x)=1$. We rearrange to $0=x^{2}-4 x+1$. From the quadratic formula, the solutions to this equation are $2 \pm \sqrt{3}$. Since we are plainly looking for a number less than $x_{2}=1$, we conclude that $\lim x_{n}=2-\sqrt{3}$.

2.4 .6

(a) Observe that $(x-y)^{2}=x^{2}-2 x y+y^{2} \geq 0$, so $x^{2}+y^{2} \geq 2 x y$. This implies that

$$
(x+y)^{2}=x^{2}+2 x y+y^{2} \geq 4 x y
$$

Taking the square root of both sides of this equation shows that $x+y \geq 2 \sqrt{x y}$, implying that indeed $\frac{x+y}{2} \geq \sqrt{x y}$.
(b) We have $x_{n+1}=\sqrt{x_{n} y_{n}}$ and $y_{n+1}=\frac{x_{n}+y_{n}}{2}$, and we start with $0 \leq x_{1} \leq y_{1}$. We claim that for any $n, x_{n} \leq x_{n+1} \leq y_{n+1} \leq y_{n}$. For the base case, let $n=1$. Then $x_{2}=\sqrt{x_{1} y_{1}} \geq x_{1}$ since $x_{1} \leq y_{1}$. Likewise $y_{2}=\frac{x_{1}+y_{1}}{2} \leq y_{1}$. Finally, $x_{2} \leq y_{2}$ by part (a). We conclude that $x_{1} \leq x_{2} \leq y_{2} \leq y_{1}$. The inductive step follows by identical logic.

Now, we have $\left(x_{n}\right)$ increasing and bounded above by y_{1} (or any y_{n}) and y_{n} decreasing and bounded below by 0 (or any x_{n}). We conclude both sequences converge. Thus we may use the Algebraic Limit Theorems and Exercise 2.3.1 to conclude that if $\lim x_{n}=x$ and $\lim y_{n}=y$, then $x=\sqrt{x y}$ and $y=\frac{x+y}{2}$. Rearranging either equation gives $x=y$.

2.4 .8

(b) For the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, observe that

$$
\frac{1}{n(n-1)}=\frac{1}{n}-\frac{1}{n+1}
$$

Therefore the partial sums of the series are of the form

$$
\begin{aligned}
s_{m} & =\frac{1}{1(2)}+\frac{1}{2(3)}+\cdots+\frac{1}{m(m+1)} \\
& =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{m}-\frac{1}{m+1}\right) \\
& =1-\frac{1}{m}
\end{aligned}
$$

We see that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$.
(c) For the series $\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n}\right)$, observe that

$$
\log \left(\frac{n+1}{n}\right)=\log (n+1)-\log (n)
$$

Therefore the partial sums of the series are of the form

$$
\begin{aligned}
s_{m} & =\log \left(\frac{2}{1}\right)+\log \left(\frac{3}{2}\right)+\cdots+\log \left(\frac{m+1}{m}\right) \\
& =(\log (2)-\log (1))+(\log (3)-\log (2))+\cdots+(\log (m+1)-\log (m)) \\
& =\log (m)-\log (1) \\
& =\log (m)-0 \\
& =\log (m)
\end{aligned}
$$

Since $\log (m)$ grows unboundedly as m grows, the series diverges (more precisely, "diverges to infinity."

2 Other Problems

Problem 4

(a) Let $\left(a_{n}\right)$ be a sequence with $a_{n} \neq 0$ such that $\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$. Choose a real number k with $L<k<1$. Then if $\epsilon=k-L$, there is some N such that $n \geq N$ implies that $\left|\left|\frac{a_{n+1}}{a_{n}}\right|-L\right|<\epsilon$, implying that $\left|\frac{a_{n+1}}{a_{n}}\right|<L+\epsilon=k$. In particular for $n \geq N$, we have $\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<k$, or in other words $\left|a_{n+1}\right|<k\left|a_{n}\right|$. Applying this relationship inductively we see that $0 \leq\left|a_{n+N}\right|<k^{n}\left|a_{N}\right|$. Since $k^{n} \rightarrow 0$, we have that $k^{n}\left|a_{N}\right| \rightarrow 0$. Hence by the squeeze theorem $\left|a_{n+N}\right| \rightarrow 0$. Reindexing this becomes $\left|a_{n}\right| \rightarrow 0$. But in general if $|b| \rightarrow 0$ then $b \rightarrow 0$ (exercise!) so we see that $a_{n} \rightarrow 0$.
(b) Let $b_{n}=\frac{a^{n}}{n^{p}}$ for $|a|<1$ and $p>0$. Then we have

$$
\left|\frac{b_{n+1}}{b_{n}}\right|=\frac{|a| \cdot n^{p}}{(n+1)^{p}}
$$

and the limit of this term as $n \rightarrow \infty$ is $|a|<1$. So $\lim b_{n}=0$ by part (a).
(c) Let $c_{n}=\frac{a^{n}}{n!}$. Then we have

$$
\left|\frac{c_{n+1}}{c_{n}}\right|=\frac{|a|}{n}
$$

and the limit of this term as $n \rightarrow \infty$ is $0<1$. So $\lim c_{n}=0$ by part (a).

