MATH 311H: Homework 5

Due: October 9 at 5 pm

- 1. Upcoming office hours are Monday October 2 and Thursday October 5 10-11 am in LSH B-102D.
- 2. Read Sections 2.5-6 in Abbott.
- 3. Do Abbott Exercises 2.3.1, 2.3.3*, 2.3.5, 2.3.10, 2.4.1*, 2.4.6*, 2.4.8(b),(c)
- 4. Assume that (a_n) is a sequence with $a_n \neq 0$ for which the limit $L = \lim \left| \frac{a_{n+1}}{a_n} \right|$ exists. *
 - (a) Show that if L < 1 then $\lim a_n = 0$. Hint: Choose k such that L < k < 1. Then there exists N such that $n \ge N$ implies that $\left|\frac{a_{n+1}}{a_n}\right| < k$, so $|a_{n+1}| < k|a_n|$ for all $n \ge N$.
 - (b) Show that $\lim_{n\to\infty} \frac{a^n}{n^p} = 0$ for all |a| < 1 and p > 0.
 - (c) Show that $\lim_{n\to\infty} \frac{a^n}{n!} = 0$ for all $a \in \mathbb{R}$.