
Homework 4 Solutions

September 28, 2023

Other Problems

Section 1.5

Problem 1.5.1

Assume B is countable. Then there is a bijection f : N → B. Let A be an infinite subset of B.
Then set n1 = min{n ∈ N : f(n) ∈ A}. Continue inductively, defining ni to be min{n ∈ N :
f(n) ∈ A,ni > ni−1}. Then g : N → A defined by g(i) = f(ni) is a map fromN to A which is
injective because f is injective and each of the ni are distinct, and onto because f is onto, hence
a bijection.

Problem 1.5.9

(a) We see that
√
2 is a root of x2−2 = 0 and that 3

√
2 is a root of x3−2 = 0. If x =

√
2+

√
3, we

notice that x2 = 5+2
√
6, so (x2− 5)2 = 24. Expanding this out we see that x4− 10x2− 49 = 0.

So
√
2 +

√
3 is a root of this polynomial.

(b) For n ∈ N, let Pn be the set of polynomials with integer coefficients having degree n. Notice
that Pn is equivalent to an ordered tuple of integers (an, . . . , a0), or an element of the product
Zn. Since Z is countable, we may apply the usual counting-along-diagonals argument n times to
show that the set of all such tuples of integers is countable, so the set Pn is countable. Now we
let An be the set of all roots of polynomials in Pn. The total number of roots of a polynomial of
degree n is finite, so An is a union of a countable number (one for each element of Pn) of finite
sets. By Theorem 1.5.8, An itself is countable.

(c) The set of algebraic numbers is ∪∞
n=1An, which is a countable union of countable sets, hence

countable. We conclude that the set of transcendental numbers must be uncountable.

Section 2.2

Problem 2.2.2

(a) Let ϵ > 0, and choose N such that N < 25ϵ
6 . Then for n ≥ N , we have∣∣∣∣2n+ 1

5n+ 4
− 2

5

∣∣∣∣ = ∣∣∣∣10n+ 2− (10n+ 8)

5(5n+ 4

∣∣∣∣ = 6

25n+ 20
<

6

25n
< ϵ.

So lim 2n+1
5n+4 = 2

5 .

1



(b) Let ϵ > 0. Choose N such that ϵ
2 < N . Then for n ≥ N , we have∣∣∣∣ 2n2

n3 + 3
− 0

∣∣∣∣ = ∣∣∣∣ 2n2

n3 + 3

∣∣∣∣ < ∣∣∣∣2n2

n3

∣∣∣∣ = 2 · 1
n
< 2 · ϵ

2
= ϵ.

So lim 2n2

n3+3
= 0.

(c) Recall that | sinx| ≤ 1 for all real x. Given ϵ > 0, let N be a natural number such that
N > 1

ϵ3
. Then for n ≥ N , we have∣∣∣∣sin(n2)

3
√
n

− 0

∣∣∣∣ = | sin(n2)|
3
√
n

≤ 1
3
√
n
≤ 1

3
√
N

< ϵ.

So lim sin(n2)
3√n

= 0.

Section 2.3

Problem 2.3.2

Let xn → 2.

(a) Given ϵ > 0, choose N such that n ≥ N implies that |xn − 2| < 3ϵ
2 . Then for n ≥ N ,∣∣∣∣2xn − 1

3
− 1

∣∣∣∣ = ∣∣∣∣2xn − 4

3

∣∣∣∣ = 2|xn − 2|
3

<
2

3
· 3ϵ
2

= ϵ.

So lim 2xn−1
3 = 1.

(b) First observe that ∣∣∣∣ 1xn − 1

2

∣∣∣∣ = ∣∣∣∣2− xn
2xn

∣∣∣∣
=

|2− xn|
2|xn|

Now choose N1 such that n ≥ N1 implies that |xn − 2| < 1, which is to say −1 < xn − 2 < 1,
so that 1 < xn < 3, and in particular xn > 1. Then given ϵ > 0, choose N2 such that n ≥ N2

implies that |2− xn| < 2ϵ. Then n ≥ N = max{N1, N2} implies that∣∣∣∣ 1xn − 1

2

∣∣∣∣ = ∣∣∣∣2− xn
2xn

∣∣∣∣
=

|2− xn|
2|xn|

<
2ϵ

2(1)

= ϵ.

We see that 1
xn

→ 1
2 as desired.



Problem 2.3.4

(a) Since an → 0, the first three algebraic limit theorems imply that lim(1+2an) = 1+2(0) = 0
and lim(1+3an−4a2n) = 1+3(0)−4(0)2 = 1. Since in particular the second number is nonzero,
we now have that

lim

(
1 + 2an

1 + 3an − 4a2n

)
=

1 + 0

1 + 0
= 1.

(b) We observe that

(an + 2)2 − 4

an
=

a2n + 4an + 4− 4

an
=

a2n + 4an
an

= an + 4.

The algebraic limit theorems imply that lim(an + 4) = 0 + 4 = 4, so

lim

(
(an + 2)2 − 4

an

)
= 4.

(c) We observe that
2
an

+ 3
1
an

+ 5
=

2 + 3an
1 + 5an

.

The algebraic limit theorems imply that the limit of the righthand term is 2 as an → 0. Ergo

lim

(
2
an

+ 3
1
an

+ 5

)
= 2.

Problem 2.3.8

(a) Let p(x) = cmxm+ · · ·+ c1x+ c0 be a polynomial and let xn → x. Then the algebraic limit
theorems imply that p(xn) = cmxmn + · · ·+ c1xn + c0 → cmxm + . . . c1x+ c0 = p(x).

(b) Consider the function f : [0, 1] → {0, 1} defined by

f(x) =

{
1 x ̸= 0

0 x = 0

Consider the sequence xn = 1
n , which converges to x = 0. Then f(xn) = 1 but f(x) = 0, so

f(xn) does not converge to f(x).

Problem 4

We begin by proving a quick lemma, which will be helpful for Problems 4 and 5.

Lemma 1. A function f : A → B is a bijection if and only if there is a function g : B → A
such that g(f(a)) = a for all a ∈ A and f(g(b)) = b for all b ∈ B. The function g is called the
inverse of A.



Proof. Suppose f : A → B is a bijection. Then let g : B → A be the function defined as follows:
for any b ∈ B, there exists a ∈ A such that f(a) = b by surjectivity of f . We let g(b) = a.
This is well-defined since if f(a1) = f(a2) = b, then a1 = a2 by injectivity, so g(b) = a1 = a2 is
a unique element. Then by construction g(f(a)) = a. Moreover f(g(b)) = f(a) where a is an
element such that f(a) = b, so f(g(b)) = b.

Now suppose f : A → B has an inverse g. Then if f(a1) = f(a2), we apply g to see that
a1 = g(f(a1)) = g(f(a2)) = a2, so f is injective. Moreover, if b ∈ B, we have f(g(b)) = b, so b
is f(a) for a = g(b). Ergo f is surjective. So f is a bijection.

Now we look at our prospective equivalence relation. Clearly f : A → A the identity function
given by f(a) = a is a bijection, so A ∼ A and this relationship is reflexive. Moreover, suppose
A ∼ B. Then there is a bijection f : A → B, which by the lemma has some inverse function
g : B → A. As g also has an inverse, namely f , we have that g is also a bijection. So, B ∼ A, and
∼ is symmetric. Finally, suppose A ∼ B and B ∼ C. Then we have f : A → B a bijection and
g : B → C a bijection. Consider the function h = g◦f : A → C defined by h(a) = g(f(a)). First,
we claim h is surjective. For if c ∈ C, by surjectivity of g there is some b such that g(b) = c, and
by surjectivity of f there is some a such that f(a) = b. So h(a) = g(f(a)) = g(b) = c. As c ∈ C
was arbitrary, h is surjective. Furthermore we claim h is injective. For suppose h(a1) = h(a2).
Then g(f(a1)) = g(f(a2)), so by injectivity of g, we have f(a1) = f(a2). Then by injectivity
of f we have a1 = a2. So h(a1) = h(a2) implies that a1 = a2, hence h is injective. So h is a
bijection and A ∼ C, so ∼ is transitive. Ergo ∼ is an equivalence relation.

Problem 5

(a) Consider the map f : [0, 1) → [0, 1] defined by

f(x) =

{
f( 1

2n−1 ) =
1
2n

f(x) = x x ̸= 1
2n−1

This has inverse g : [0, 1] → [0, 1) given by

f(x) =

{
f( 1

2n ) =
1

2n−1

f(x) = x x ̸= 1
2n

hence is a bijection.

(b) From class, f(x) = x
x2+1

is a bijection from (−1, 1) to R. We also have the map g : (a, b) →
(−1, 1) which is defined by g(x) = 2(x−a)

b−a − 1, which has inverse h : (−1, 1) → (a, b) given

by h(x) = (b−a)(x+1)
2 . Then f ◦ g, the function given by mapping x to f(g(x)), is the desired

bijection.

(c) Let S be the set of sequences (an) such that an ∈ {0, 1} and P (N) be the set of subsets of
N. Consider the map f : S → P (N) which sends (an) to the subset A ⊂ N such that n ∈ A if an
only if an = 0. This has a clear inverse by reversing the operation, hence is a bijection.



Problem 6

Let r and s be positive rationals. We recall that they correspond to the cuts r∗ = {p : p < r} ⊆ Q
and s∗ = {q : q < s} ⊆ Q. The product of these these two cuts is

r∗s∗ = {t : t < pq for some p ∈ r∗, q ∈ s∗ with p > 0, q > 0}

Our goal is to show that this is equal to (rs)∗ = {u : u < rs} ⊆ Q. First, let t ∈ r∗s∗. Then
there exist p ∈ r∗, q ∈ s∗ with p and q positive such that t < pq. But in particular p < r and
q < s, by definition of r∗ and s∗, so in fact t < pq < rs, and t ∈ (rs)∗. So, r∗s∗ ⊆ (rs)∗.

Now, let u ∈ (rs)∗. If u ≤ 0, then certainly u ∈ r∗s∗, since it is less than the product of any
two positive numbers in r∗ and s∗. Now, let u > 0. Then by assumption u < rs. Let

ϵ = min

{
rs− u

2r
,
rs− u

2s
,
r

2
,
s

2

}
.

Then we observe that 0 < r − ϵ < r and 0 < s − ϵ < s, so that r − ϵ ∈ r∗ and s − ϵ ∈ s∗. We
have that

(r − ϵ)(s− ϵ) = rs− rϵ− sϵ+ ϵ2

> rs− rϵ− sϵ

≥ rs− rs− u

2
− rs− u

2
= rs− (rs− u)

= u.

Here the third line follows because rϵ ≤ r
(
rs−u
2r

)
= rs−u

2 . We conclude that u is less than a
product of positive elements in r∗ and s∗, hence an element of r∗s∗. So (rs)∗ ⊆ r∗s∗. Having
shown both inclusions we conclude that (rs)∗ = r∗s∗.


