Homework 4 Solutions

September 28, 2023

Other Problems

Section 1.5

Problem 1.5.1

Assume B is countable. Then there is a bijection $f: \mathbb{N} \rightarrow B$. Let A be an infinite subset of B. Then set $n_{1}=\min \{n \in \mathbb{N}: f(n) \in A\}$. Continue inductively, defining n_{i} to be $\min \{n \in \mathbb{N}$: $\left.f(n) \in A, n_{i}>n_{i-1}\right\}$. Then $g: \mathbb{N} \rightarrow A$ defined by $g(i)=f\left(n_{i}\right)$ is a map from \mathbb{N} to A which is injective because f is injective and each of the n_{i} are distinct, and onto because f is onto, hence a bijection.

Problem 1.5.9

(a) We see that $\sqrt{2}$ is a root of $x^{2}-2=0$ and that $\sqrt[3]{2}$ is a root of $x^{3}-2=0$. If $x=\sqrt{2}+\sqrt{3}$, we notice that $x^{2}=5+2 \sqrt{6}$, so $\left(x^{2}-5\right)^{2}=24$. Expanding this out we see that $x^{4}-10 x^{2}-49=0$. So $\sqrt{2}+\sqrt{3}$ is a root of this polynomial.
(b) For $n \in \mathbb{N}$, let P_{n} be the set of polynomials with integer coefficients having degree n. Notice that P_{n} is equivalent to an ordered tuple of integers $\left(a_{n}, \ldots, a_{0}\right)$, or an element of the product \mathbb{Z}^{n}. Since \mathbb{Z} is countable, we may apply the usual counting-along-diagonals argument n times to show that the set of all such tuples of integers is countable, so the set P_{n} is countable. Now we let A_{n} be the set of all roots of polynomials in P_{n}. The total number of roots of a polynomial of degree n is finite, so A_{n} is a union of a countable number (one for each element of P_{n}) of finite sets. By Theorem 1.5.8, A_{n} itself is countable.
(c) The set of algebraic numbers is $\cup_{n=1}^{\infty} A_{n}$, which is a countable union of countable sets, hence countable. We conclude that the set of transcendental numbers must be uncountable.

Section 2.2

Problem 2.2.2

(a) Let $\epsilon>0$, and choose N such that $N<\frac{25 \epsilon}{6}$. Then for $n \geq N$, we have

$$
\left|\frac{2 n+1}{5 n+4}-\frac{2}{5}\right|=\left|\frac{10 n+2-(10 n+8)}{5(5 n+4}\right|=\frac{6}{25 n+20}<\frac{6}{25 n}<\epsilon .
$$

So $\lim \frac{2 n+1}{5 n+4}=\frac{2}{5}$.
(b) Let $\epsilon>0$. Choose N such that $\frac{\epsilon}{2}<N$. Then for $n \geq N$, we have

$$
\left|\frac{2 n^{2}}{n^{3}+3}-0\right|=\left|\frac{2 n^{2}}{n^{3}+3}\right|<\left|\frac{2 n^{2}}{n^{3}}\right|=2 \cdot \frac{1}{n}<2 \cdot \frac{\epsilon}{2}=\epsilon
$$

So $\lim \frac{2 n^{2}}{n^{3}+3}=0$.
(c) Recall that $|\sin x| \leq 1$ for all real x. Given $\epsilon>0$, let N be a natural number such that $N>\frac{1}{\epsilon^{3}}$. Then for $n \geq N$, we have

$$
\left|\frac{\sin \left(n^{2}\right)}{\sqrt[3]{n}}-0\right|=\frac{\left|\sin \left(n^{2}\right)\right|}{\sqrt[3]{n}} \leq \frac{1}{\sqrt[3]{n}} \leq \frac{1}{\sqrt[3]{N}}<\epsilon
$$

So $\lim \frac{\sin \left(n^{2}\right)}{\sqrt[3]{n}}=0$.

Section 2.3

Problem 2.3.2

Let $x_{n} \rightarrow 2$.
(a) Given $\epsilon>0$, choose N such that $n \geq N$ implies that $\left|x_{n}-2\right|<\frac{3 \epsilon}{2}$. Then for $n \geq N$,

$$
\left|\frac{2 x_{n}-1}{3}-1\right|=\left|\frac{2 x_{n}-4}{3}\right|=\frac{2\left|x_{n}-2\right|}{3}<\frac{2}{3} \cdot \frac{3 \epsilon}{2}=\epsilon
$$

So $\lim \frac{2 x_{n}-1}{3}=1$.
(b) First observe that

$$
\begin{aligned}
\left|\frac{1}{x_{n}}-\frac{1}{2}\right| & =\left|\frac{2-x_{n}}{2 x_{n}}\right| \\
& =\frac{\left|2-x_{n}\right|}{2\left|x_{n}\right|}
\end{aligned}
$$

Now choose N_{1} such that $n \geq N_{1}$ implies that $\left|x_{n}-2\right|<1$, which is to say $-1<x_{n}-2<1$, so that $1<x_{n}<3$, and in particular $x_{n}>1$. Then given $\epsilon>0$, choose N_{2} such that $n \geq N_{2}$ implies that $\left|2-x_{n}\right|<2 \epsilon$. Then $n \geq N=\max \left\{N_{1}, N_{2}\right\}$ implies that

$$
\begin{aligned}
\left|\frac{1}{x_{n}}-\frac{1}{2}\right| & =\left|\frac{2-x_{n}}{2 x_{n}}\right| \\
& =\frac{\left|2-x_{n}\right|}{2\left|x_{n}\right|} \\
& <\frac{2 \epsilon}{2(1)} \\
& =\epsilon .
\end{aligned}
$$

We see that $\frac{1}{x_{n}} \rightarrow \frac{1}{2}$ as desired.

Problem 2.3.4

(a) Since $a_{n} \rightarrow 0$, the first three algebraic limit theorems imply that $\lim \left(1+2 a_{n}\right)=1+2(0)=0$ and $\lim \left(1+3 a_{n}-4 a_{n}^{2}\right)=1+3(0)-4(0)^{2}=1$. Since in particular the second number is nonzero, we now have that

$$
\lim \left(\frac{1+2 a_{n}}{1+3 a_{n}-4 a_{n}^{2}}\right)=\frac{1+0}{1+0}=1 .
$$

(b) We observe that

$$
\frac{\left(a_{n}+2\right)^{2}-4}{a_{n}}=\frac{a_{n}^{2}+4 a_{n}+4-4}{a_{n}}=\frac{a_{n}^{2}+4 a_{n}}{a_{n}}=a_{n}+4 .
$$

The algebraic limit theorems imply that $\lim \left(a_{n}+4\right)=0+4=4$, so

$$
\lim \left(\frac{\left(a_{n}+2\right)^{2}-4}{a_{n}}\right)=4
$$

(c) We observe that

$$
\frac{\frac{2}{a_{n}}+3}{\frac{1}{a_{n}}+5}=\frac{2+3 a_{n}}{1+5 a_{n}} .
$$

The algebraic limit theorems imply that the limit of the righthand term is 2 as $a_{n} \rightarrow 0$. Ergo

$$
\lim \left(\frac{\frac{2}{a_{n}}+3}{\frac{1}{a_{n}}+5}\right)=2
$$

Problem 2.3.8

(a) Let $p(x)=c_{m} x^{m}+\cdots+c_{1} x+c_{0}$ be a polynomial and let $x_{n} \rightarrow x$. Then the algebraic limit theorems imply that $p\left(x_{n}\right)=c_{m} x_{n}^{m}+\cdots+c_{1} x_{n}+c_{0} \rightarrow c_{m} x^{m}+\ldots c_{1} x+c_{0}=p(x)$.
(b) Consider the function $f:[0,1] \rightarrow\{0,1\}$ defined by

$$
f(x)= \begin{cases}1 & x \neq 0 \\ 0 & x=0\end{cases}
$$

Consider the sequence $x_{n}=\frac{1}{n}$, which converges to $x=0$. Then $f\left(x_{n}\right)=1$ but $f(x)=0$, so $f\left(x_{n}\right)$ does not converge to $f(x)$.

Problem 4

We begin by proving a quick lemma, which will be helpful for Problems 4 and 5.
Lemma 1. A function $f: A \rightarrow B$ is a bijection if and only if there is a function $g: B \rightarrow A$ such that $g(f(a))=a$ for all $a \in A$ and $f(g(b))=b$ for all $b \in B$. The function g is called the inverse of A.

Proof. Suppose $f: A \rightarrow B$ is a bijection. Then let $g: B \rightarrow A$ be the function defined as follows: for any $b \in B$, there exists $a \in A$ such that $f(a)=b$ by surjectivity of f. We let $g(b)=a$. This is well-defined since if $f\left(a_{1}\right)=f\left(a_{2}\right)=b$, then $a_{1}=a_{2}$ by injectivity, so $g(b)=a_{1}=a_{2}$ is a unique element. Then by construction $g(f(a))=a$. Moreover $f(g(b))=f(a)$ where a is an element such that $f(a)=b$, so $f(g(b))=b$.

Now suppose $f: A \rightarrow B$ has an inverse g. Then if $f\left(a_{1}\right)=f\left(a_{2}\right)$, we apply g to see that $a_{1}=g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)=a_{2}$, so f is injective. Moreover, if $b \in B$, we have $f(g(b))=b$, so b is $f(a)$ for $a=g(b)$. Ergo f is surjective. So f is a bijection.

Now we look at our prospective equivalence relation. Clearly $f: A \rightarrow A$ the identity function given by $f(a)=a$ is a bijection, so $A \sim A$ and this relationship is reflexive. Moreover, suppose $A \sim B$. Then there is a bijection $f: A \rightarrow B$, which by the lemma has some inverse function $g: B \rightarrow A$. As g also has an inverse, namely f, we have that g is also a bijection. So, $B \sim A$, and \sim is symmetric. Finally, suppose $A \sim B$ and $B \sim C$. Then we have $f: A \rightarrow B$ a bijection and $g: B \rightarrow C$ a bijection. Consider the function $h=g \circ f: A \rightarrow C$ defined by $h(a)=g(f(a))$. First, we claim h is surjective. For if $c \in C$, by surjectivity of g there is some b such that $g(b)=c$, and by surjectivity of f there is some a such that $f(a)=b$. So $h(a)=g(f(a))=g(b)=c$. As $c \in C$ was arbitrary, h is surjective. Furthermore we claim h is injective. For suppose $h\left(a_{1}\right)=h\left(a_{2}\right)$. Then $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$, so by injectivity of g, we have $f\left(a_{1}\right)=f\left(a_{2}\right)$. Then by injectivity of f we have $a_{1}=a_{2}$. So $h\left(a_{1}\right)=h\left(a_{2}\right)$ implies that $a_{1}=a_{2}$, hence h is injective. So h is a bijection and $A \sim C$, so \sim is transitive. Ergo \sim is an equivalence relation.

Problem 5

(a) Consider the map $f:[0,1) \rightarrow[0,1]$ defined by

$$
f(x)=\left\{\begin{array}{l}
f\left(\frac{1}{2^{n-1}}\right)=\frac{1}{2^{n}} \\
f(x)=x \quad x \neq \frac{1}{2^{n-1}}
\end{array}\right.
$$

This has inverse $g:[0,1] \rightarrow[0,1)$ given by

$$
f(x)=\left\{\begin{array}{l}
f\left(\frac{1}{2^{n}}\right)=\frac{1}{2^{n-1}} \\
f(x)=x \quad x \neq \frac{1}{2^{n}}
\end{array}\right.
$$

hence is a bijection.
(b) From class, $f(x)=\frac{x}{x^{2}+1}$ is a bijection from $(-1,1)$ to \mathbb{R}. We also have the map $g:(a, b) \rightarrow$ $(-1,1)$ which is defined by $g(x)=\frac{2(x-a)}{b-a}-1$, which has inverse $h:(-1,1) \rightarrow(a, b)$ given by $h(x)=\frac{(b-a)(x+1)}{2}$. Then $f \circ g$, the function given by mapping x to $f(g(x))$, is the desired bijection.
(c) Let S be the set of sequences $\left(a_{n}\right)$ such that $a_{n} \in\{0,1\}$ and $P(\mathbb{N})$ be the set of subsets of \mathbb{N}. Consider the map $f: S \rightarrow P(\mathbb{N})$ which sends $\left(a_{n}\right)$ to the subset $A \subset \mathbb{N}$ such that $n \in A$ if an only if $a_{n}=0$. This has a clear inverse by reversing the operation, hence is a bijection.

Problem 6

Let r and s be positive rationals. We recall that they correspond to the cuts $r^{*}=\{p: p<r\} \subseteq \mathbb{Q}$ and $s^{*}=\{q: q<s\} \subseteq \mathbb{Q}$. The product of these these two cuts is

$$
r^{*} s^{*}=\left\{t: t<p q \text { for some } p \in r^{*}, q \in s^{*} \text { with } p>0, q>0\right\}
$$

Our goal is to show that this is equal to $(r s)^{*}=\{u: u<r s\} \subseteq \mathbb{Q}$. First, let $t \in r^{*} s^{*}$. Then there exist $p \in r^{*}, q \in s^{*}$ with p and q positive such that $t<p q$. But in particular $p<r$ and $q<s$, by definition of r^{*} and s^{*}, so in fact $t<p q<r s$, and $t \in(r s)^{*}$. So, $r^{*} s^{*} \subseteq(r s)^{*}$.

Now, let $u \in(r s)^{*}$. If $u \leq 0$, then certainly $u \in r^{*} s^{*}$, since it is less than the product of any two positive numbers in r^{*} and s^{*}. Now, let $u>0$. Then by assumption $u<r s$. Let

$$
\epsilon=\min \left\{\frac{r s-u}{2 r}, \frac{r s-u}{2 s}, \frac{r}{2}, \frac{s}{2}\right\} .
$$

Then we observe that $0<r-\epsilon<r$ and $0<s-\epsilon<s$, so that $r-\epsilon \in r^{*}$ and $s-\epsilon \in s^{*}$. We have that

$$
\begin{aligned}
(r-\epsilon)(s-\epsilon) & =r s-r \epsilon-s \epsilon+\epsilon^{2} \\
& >r s-r \epsilon-s \epsilon \\
& \geq r s-\frac{r s-u}{2}-\frac{r s-u}{2} \\
& =r s-(r s-u) \\
& =u .
\end{aligned}
$$

Here the third line follows because $r \epsilon \leq r\left(\frac{r s-u}{2 r}\right)=\frac{r s-u}{2}$. We conclude that u is less than a product of positive elements in r^{*} and s^{*}, hence an element of $r^{*} s^{*}$. So $(r s)^{*} \subseteq r^{*} s^{*}$. Having shown both inclusions we conclude that $(r s)^{*}=r^{*} s^{*}$.

