
Homework 3 Solutions

September 15, 2023

Section 1.3

1.3.5

Let A be nonempty and bounded above, and let c ∈ R. Set cA = {ca : a ∈ A}.

(a) We claim that if c ≥ 0, then sup cA = c supA. First, the statement is obviously true if
c = 0 since then cA = {0} and c supA = 0. Now let c > 0. Let s = supA. Then a ≤ s for all
a ∈ A, so ca ≤ cs for all ca ∈ cA, so cs is an upper bound for cA. Suppose u is an arbitrary
upper bound for cA. Then ca ≤ u for all ca ∈ cA, implying that a ≤ u

c for all a ∈ A. Ergo
u
c is an upper bound for A and in particular s ≤ u

c . So cs ≤ u. Hence cs is an upper bound
for cA which is less than or equal to any upper bound for cA, and therefore cs = sup(cA). So
c supA = sup cA.

(b) We conjecture that if A is nonempty and bounded below and c < 0, c supA = inf cA. See
the final problem for the case that c = −1.

1.3.6

Given A and B subsets of the real line, we set A+B = {a+ b : a ∈ A, b ∈ B}. Let A and B be
bounded above with s = supA and t = supB.

(a) First we observe that since a ≤ s for any a ∈ A and b ≤ t for any b ∈ B, for any a + b in
A+B we have a+ b ≤ s+ t, so s+ t is an upper bound for A+B.

(b) Now let u be any upper bound for A+B. Fix a ∈ A. We see that a+ b ≤ u for all b ∈ B,
implying that b ≤ u− a for all b ∈ B. Hence u− a is an upper bound for B, and in particular
t ≤ u− a since t is less than or equal to any upper bound for B.

(c) Rearranging t ≤ u − a for all a ∈ A, we see that a ≤ u − t for all a ∈ A. So u − t is an
upper bound for A and in particular s ≤ u − t. Ergo s + t ≤ u. Since s + t is an upper bound
for A+B which is less than or equal to any upper bound for A+B, it must be the supremum
of A+B. So sup(A+B) = supA+ supB.
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(d) Alternately, we can use the characterization of the supremum given in Lemma 1.3.8, starting
from the fact that s + t is an upper bound for A + B which we showed in part (a). Let ϵ > 0.
Since s = supA, there is some a ∈ A such that a > s − ϵ

2 . Similarly since t = supB, there is
some b ∈ B such that b > t− ϵ

2 . Then we observe that a+ b > s− ϵ
2 + b > t− ϵ

2 = (s+ t)− ϵ.
Since ϵ was arbitrary, we conclude that for all ϵ > 0 there is an element of A+B which is greater
than (s+ t)− ϵ, and therefore that s+ t = sup(A+B).

1.3.8

The suprema and infima of the sets are as follows.

(a)
{
m
n : m,n ∈ N,m < n

}
. The infimum is zero and the supremum is one, by noticing that

0 < m
n < 1 for all elements of the set and that 1

n can be made arbitrarily close to 0 and n−1
n can

be made arbitrarily close to 1.

(b)
{

(−1)m

n : m,n ∈ N
}
. The infimum, which is also a minimum, is −1 and the supremum,

which is also a maximum, is 1.

(c)
{

n
3n+1 : n ∈ N

}
. This is an increasing sequence; the infimum, which is also a minimum, is

1
4 and the supremum is 1

3 .

(d)
{

m
m+n : m,n ∈ N

}
. This is the same set as part (a)!

Section 1.4

1.4.1

(b) Say a ∈ Q and t ∈ I, which is to say a is rational and i is irrational. Suppose that
a+ t ∈ Q. Then since the sum of two rationals is a rational and the additive inverse of a rational
is a rational, we may add −a to conclude that a + t + −a = t is a rational as well, which is
untrue. Similarly, if a ̸= 0, then if at is rational, since the multiplicative inverse of a nonzero
rational is a rational and the product of two rationals is a rational, a−1at = t is as well. We
conclude that a+ t is irrational and at is irrational as long as a ̸= 0.

(c) Given two irrational numbers s and t, their sum and product could be either rational or
irrational. For example,

√
2 + −

√
2 = 0 ∈ Q, but

√
2 +

√
2 = 2

√
2 is certainly not in Q, for it

it were, then its quotient by the rational number 2 would be as well. Similarly,
√
2(
√
2) = 2 is

rational, but
√
2
√
3 =

√
6 is not, by Homework 1.

1.4.5

We claim that if a and b are real numbers with a < b, there is an irrational number t such that
a < t < b. Consider the real numbers a −

√
2 < b −

√
2. By the density of the rationals in the

reals, there is a rational r such that a−
√
2 < r < b−

√
2. Adding

√
2 to all three terms we see

that a < r +
√
2 < b. Now by Exercise 1.4.1, the sum of a rational number and an irrational

number is always irrational, so in particular r +
√
2 is irrational. Therefore we are done.



Other Problems

Problem 5

(a) (iv) Let a, b ∈ F . We recall that part (iii) of this proposition showed us that (−a)(b) =
−ab. We apply this to show that (−a)(−b) = −(a(−b)) = −((−b)(a)) = −(−ba) = −(−ab),
where we have used axiom (A2) twice to commute terms in our product. This tells us that
(−a)(−b)+ (−ab) = 0. But we may add ab to both sides of this equation to obtain ((−a)(−b)+
(−ab)) + ab = ab. Using (A1) we rearrange to (−a)(−b) + (−ab + ab) = ab. Using (A4) we
may add the terms in parentheses to obtain (−a)(−b) + 0 = ab. Using (A3) this reduces to
(−a)(−b) = ab, as desired.

(v) Let ac = bc, with c ̸= 0. Then by (A4), c has a multiplicative inverse c−1. We multiply by it
on both sides to obtain (ac)c−1 = (bc)c−1. Using (M1) we rearrange to obtain a(cc−1) = b(cc−1).
Using (M4) this reduces to a(1) = b(1) and using (M3) this becomes a = b, as desired.

(b) (v) Recall that part (iv) tells us that all squares in an ordered field are nonnegative. But
1 = (1)(1) is a square, hence nonnegative, and 0 ̸= 1, so we have that 0 < 1.

(vi) We have 0 < a. Suppose that a−1 < 0. Then by invariance under multiplication by a
positive, we have a−1a < a(0), or 1 < 0. This is false, by (v). Ergo, 0 < a−1.

(vii) Say that 0 < a < b. We know by (vi) that both a−1 and b−1 are positive. Now, multiply
both sides by a−1b−1. Then we have a(a−1b−1) < b(a−1b−1). Applying (M1) on the left and
(M2) on the right we obtain (aa−1)b−1 < b(b−1a−1). Now applying (M4) on the left and (M1)
on the right we obtain 1(b−1) < (bb−1)a−1. Now applying (M3) on the left and (M4) on the
right, we obtain b−1 < 1(a−1). A final application of (M3) gives b− < a−1. So 0 < b− < a−1 as
desired.

Problem 6

(a) Suppose we can make Z/pZ into an ordered field. In Z/pZ, the additive identity element
is 0 = [0] and the multiplicative identity element is 1 = [1]. We recall that in any ordered
field the additive identity is less than the multiplicative identity, that is, [0] < [1]. But then
adding [1] to both sides we have [1] < [2], [2] < [3], and so on. In particular using transitivity
[1] < [2] < · · · < [p − 1] < [p] = [0]. But then [1] < [0], which violates trichotomy. So, there is
no such order on Z/pZ.

(b) (i) It is easy to see that the multiplicative identity in C is the element 1 = 1 + 0i, since
(1+0i)(a+ bi) = (1(a)− b(0))+(0(a)+1(b))i = a+ bi, and likewise for (a+ bi)(1+0i). Now, let
a+ bi be nonzero in C; since the additive identity is 0+0i, this in particular means that at least
one of a and b is nonzero. We claim that the multiplicative inverse of a + bi is a

a2+b2
+ −b

a2+b2
i.

Note that if a+ bi ̸= 0, then a2 + b2 > 0, so this is a valid element of C. We check it is actually
the multiplicative inverse:

(a+ bi)

(
a

a2 + b2
+

−b

a2 + b2
i

)
=

(
a

(
a

a2 + b2

)
− b

(
−b

a2 + b2

))
+

(
a

(
−b

a2 + b2

)
+ b

(
a

a2 + b2

))
i

=
a2 + b2

a2 + b2
+

−ba+ ab

a2 + b2
i

= 1 + 0i

= 1



The other product is similar, or we may use the fact that multiplication commutes.

(ii) We recall that in an ordered field all squares are positive. Ergo, if C can be made into an
ordered field, then 0 < −1, since i2 = −1. But 0 < 1 as well, and if an element in an ordered
field is positive, then its additive inverse is negative. So no such ordering exists.

Problem 7

Let S be nonempty and bounded below, say by ℓ. Then for any s ∈ S, we have ℓ ≤ s, implying
that −s ≤ −ℓ. So ℓ is an upper bound for −S. Since −S is bounded above it has a supremum
by the Axiom of Completeness, call it a. We claim that −a is the infimum of S. First, since a
is an upper bound of −S, we have −s ≤ a for all −s ∈ −S, so we see that −a ≤ s for all s ∈ S,
hence −a is a lower bound for S. Furthermore suppose that ℓ is an arbitrary lower bound for S,
then as we argued above −ℓ is an upper bound for −S, so a ≤ −ℓ, implying that ℓ ≤ −a. Hence
a is greater than or equal to any lower bound for S. Ergo a is the infimum of S. We conclude
that bounded below nonempty subsets of the real numbers have infima.


