Homework 3 Solutions

September 15, 2023

Section 1.3

1.3.5

Let A be nonempty and bounded above, and let $c \in \mathbb{R}$. Set $c A=\{c a: a \in A\}$.
(a) We claim that if $c \geq 0$, then $\sup c A=c \sup A$. First, the statement is obviously true if $c=0$ since then $c A=\{0\}$ and $c \sup A=0$. Now let $c>0$. Let $s=\sup A$. Then $a \leq s$ for all $a \in A$, so $c a \leq c s$ for all $c a \in c A$, so $c s$ is an upper bound for $c A$. Suppose u is an arbitrary upper bound for $c A$. Then $c a \leq u$ for all $c a \in c A$, implying that $a \leq \frac{u}{c}$ for all $a \in A$. Ergo $\frac{u}{c}$ is an upper bound for A and in particular $s \leq \frac{u}{c}$. So $c s \leq u$. Hence $c s$ is an upper bound for $c A$ which is less than or equal to any upper bound for $c A$, and therefore $c s=\sup (c A)$. So $c \sup A=\sup c A$.
(b) We conjecture that if A is nonempty and bounded below and $c<0, c \sup A=\inf c A$. See the final problem for the case that $c=-1$.

1.3.6

Given A and B subsets of the real line, we set $A+B=\{a+b: a \in A, b \in B\}$. Let A and B be bounded above with $s=\sup A$ and $t=\sup B$.
(a) First we observe that since $a \leq s$ for any $a \in A$ and $b \leq t$ for any $b \in B$, for any $a+b$ in $A+B$ we have $a+b \leq s+t$, so $s+t$ is an upper bound for $A+B$.
(b) Now let u be any upper bound for $A+B$. Fix $a \in A$. We see that $a+b \leq u$ for all $b \in B$, implying that $b \leq u-a$ for all $b \in B$. Hence $u-a$ is an upper bound for B, and in particular $t \leq u-a$ since t is less than or equal to any upper bound for B.
(c) Rearranging $t \leq u-a$ for all $a \in A$, we see that $a \leq u-t$ for all $a \in A$. So $u-t$ is an upper bound for A and in particular $s \leq u-t$. Ergo $s+t \leq u$. Since $s+t$ is an upper bound for $A+B$ which is less than or equal to any upper bound for $A+B$, it must be the supremum of $A+B$. So $\sup (A+B)=\sup A+\sup B$.
(d) Alternately, we can use the characterization of the supremum given in Lemma 1.3.8, starting from the fact that $s+t$ is an upper bound for $A+B$ which we showed in part (a). Let $\epsilon>0$. Since $s=\sup A$, there is some $a \in A$ such that $a>s-\frac{\epsilon}{2}$. Similarly since $t=\sup B$, there is some $b \in B$ such that $b>t-\frac{\epsilon}{2}$. Then we observe that $a+b>s-\frac{\epsilon}{2}+b>t-\frac{\epsilon}{2}=(s+t)-\epsilon$. Since ϵ was arbitrary, we conclude that for all $\epsilon>0$ there is an element of $A+B$ which is greater than $(s+t)-\epsilon$, and therefore that $s+t=\sup (A+B)$.

1.3.8

The suprema and infima of the sets are as follows.
(a) $\left\{\frac{m}{n}: m, n \in \mathbb{N}, m<n\right\}$. The infimum is zero and the supremum is one, by noticing that $0<\frac{m}{n}<1$ for all elements of the set and that $\frac{1}{n}$ can be made arbitrarily close to 0 and $\frac{n-1}{n}$ can be made arbitrarily close to 1 .
(b) $\left\{\frac{(-1)^{m}}{n}: m, n \in \mathbb{N}\right\}$. The infimum, which is also a minimum, is -1 and the supremum, which is also a maximum, is 1 .
(c) $\left\{\frac{n}{3 n+1}: n \in \mathbb{N}\right\}$. This is an increasing sequence; the infimum, which is also a minimum, is $\frac{1}{4}$ and the supremum is $\frac{1}{3}$.
(d) $\left\{\frac{m}{m+n}: m, n \in \mathbb{N}\right\}$. This is the same set as part (a)!

Section 1.4

1.4 .1

(b) Say $a \in \mathbb{Q}$ and $t \in I$, which is to say a is rational and i is irrational. Suppose that $a+t \in \mathbb{Q}$. Then since the sum of two rationals is a rational and the additive inverse of a rational is a rational, we may add $-a$ to conclude that $a+t+-a=t$ is a rational as well, which is untrue. Similarly, if $a \neq 0$, then if $a t$ is rational, since the multiplicative inverse of a nonzero rational is a rational and the product of two rationals is a rational, $a^{-1} a t=t$ is as well. We conclude that $a+t$ is irrational and $a t$ is irrational as long as $a \neq 0$.
(c) Given two irrational numbers s and t, their sum and product could be either rational or irrational. For example, $\sqrt{2}+-\sqrt{2}=0 \in \mathbb{Q}$, but $\sqrt{2}+\sqrt{2}=2 \sqrt{2}$ is certainly not in \mathbb{Q}, for it it were, then its quotient by the rational number 2 would be as well. Similarly, $\sqrt{2}(\sqrt{2})=2$ is rational, but $\sqrt{2} \sqrt{3}=\sqrt{6}$ is not, by Homework 1 .

1.4.5

We claim that if a and b are real numbers with $a<b$, there is an irrational number t such that $a<t<b$. Consider the real numbers $a-\sqrt{2}<b-\sqrt{2}$. By the density of the rationals in the reals, there is a rational r such that $a-\sqrt{2}<r<b-\sqrt{2}$. Adding $\sqrt{2}$ to all three terms we see that $a<r+\sqrt{2}<b$. Now by Exercise 1.4.1, the sum of a rational number and an irrational number is always irrational, so in particular $r+\sqrt{2}$ is irrational. Therefore we are done.

Other Problems

Problem 5

(a) (iv) Let $a, b \in F$. We recall that part (iii) of this proposition showed us that $(-a)(b)=$ $-a b$. We apply this to show that $(-a)(-b)=-(a(-b))=-((-b)(a))=-(-b a)=-(-a b)$, where we have used axiom (A2) twice to commute terms in our product. This tells us that $(-a)(-b)+(-a b)=0$. But we may add $a b$ to both sides of this equation to obtain $((-a)(-b)+$ $(-a b))+a b=a b$. Using (A1) we rearrange to $(-a)(-b)+(-a b+a b)=a b$. Using (A4) we may add the terms in parentheses to obtain $(-a)(-b)+0=a b$. Using (A3) this reduces to $(-a)(-b)=a b$, as desired.
(v) Let $a c=b c$, with $c \neq 0$. Then by (A4), c has a multiplicative inverse c^{-1}. We multiply by it on both sides to obtain $(a c) c^{-1}=(b c) c^{-1}$. Using (M1) we rearrange to obtain $a\left(c c^{-1}\right)=b\left(c c^{-1}\right)$. Using (M4) this reduces to $a(1)=b(1)$ and using (M3) this becomes $a=b$, as desired.
(b) (v) Recall that part (iv) tells us that all squares in an ordered field are nonnegative. But $1=(1)(1)$ is a square, hence nonnegative, and $0 \neq 1$, so we have that $0<1$.
(vi) We have $0<a$. Suppose that $a^{-1}<0$. Then by invariance under multiplication by a positive, we have $a^{-1} a<a(0)$, or $1<0$. This is false, by (v). Ergo, $0<a^{-1}$.
(vii) Say that $0<a<b$. We know by (vi) that both a^{-1} and b^{-1} are positive. Now, multiply both sides by $a^{-1} b^{-1}$. Then we have $a\left(a^{-1} b^{-1}\right)<b\left(a^{-1} b^{-1}\right)$. Applying (M1) on the left and (M2) on the right we obtain $\left(a a^{-1}\right) b^{-1}<b\left(b^{-1} a^{-1}\right)$. Now applying (M4) on the left and (M1) on the right we obtain $1\left(b^{-1}\right)<\left(b b^{-1}\right) a^{-1}$. Now applying (M3) on the left and (M4) on the right, we obtain $b^{-1}<1\left(a^{-1}\right)$. A final application of (M3) gives $b^{-}<a^{-1}$. So $0<b^{-}<a^{-1}$ as desired.

Problem 6

(a) Suppose we can make $\mathbb{Z} / p \mathbb{Z}$ into an ordered field. In $\mathbb{Z} / p \mathbb{Z}$, the additive identity element is $0=[0]$ and the multiplicative identity element is $1=[1]$. We recall that in any ordered field the additive identity is less than the multiplicative identity, that is, $[0]<[1]$. But then adding [1] to both sides we have [1] < [2], [2] < [3], and so on. In particular using transitivity $[1]<[2]<\cdots<[p-1]<[p]=[0]$. But then [1] $<[0]$, which violates trichotomy. So, there is no such order on $\mathbb{Z} / p \mathbb{Z}$.
(b) (i) It is easy to see that the multiplicative identity in \mathbb{C} is the element $1=1+0 i$, since $(1+0 i)(a+b i)=(1(a)-b(0))+(0(a)+1(b)) i=a+b i$, and likewise for $(a+b i)(1+0 i)$. Now, let $a+b i$ be nonzero in \mathbb{C}; since the additive identity is $0+0 i$, this in particular means that at least one of a and b is nonzero. We claim that the multiplicative inverse of $a+b i$ is $\frac{a}{a^{2}+b^{2}}+\frac{b}{a^{2}+b^{2}} i$. Note that if $a+b i \neq 0$, then $a^{2}+b^{2}>0$, so this is a valid element of \mathbb{C}. We check it is actually the multiplicative inverse:

$$
\begin{aligned}
(a+b i)\left(\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} i\right) & =\left(a\left(\frac{a}{a^{2}+b^{2}}\right)-b\left(\frac{-b}{a^{2}+b^{2}}\right)\right)+\left(a\left(\frac{-b}{a^{2}+b^{2}}\right)+b\left(\frac{a}{a^{2}+b^{2}}\right)\right) i \\
& =\frac{a^{2}+b^{2}}{a^{2}+b^{2}}+\frac{-b a+a b}{a^{2}+b^{2}} i \\
& =1+0 i \\
& =1
\end{aligned}
$$

The other product is similar, or we may use the fact that multiplication commutes.
(ii) We recall that in an ordered field all squares are positive. Ergo, if \mathbb{C} can be made into an ordered field, then $0<-1$, since $i^{2}=-1$. But $0<1$ as well, and if an element in an ordered field is positive, then its additive inverse is negative. So no such ordering exists.

Problem 7

Let S be nonempty and bounded below, say by ℓ. Then for any $s \in S$, we have $\ell \leq s$, implying that $-s \leq-\ell$. So ℓ is an upper bound for $-S$. Since $-S$ is bounded above it has a supremum by the Axiom of Completeness, call it a. We claim that $-a$ is the infimum of S. First, since a is an upper bound of $-S$, we have $-s \leq a$ for all $-s \in-S$, so we see that $-a \leq s$ for all $s \in S$, hence $-a$ is a lower bound for S. Furthermore suppose that ℓ is an arbitrary lower bound for S, then as we argued above $-\ell$ is an upper bound for $-S$, so $a \leq-\ell$, implying that $\ell \leq-a$. Hence a is greater than or equal to any lower bound for S. Ergo a is the infimum of S. We conclude that bounded below nonempty subsets of the real numbers have infima.

