Homework 2 Solutions

September 10, 2023

Section 1.2

Problem 1.2.3

(a) This is false; let $A_{n}=\{n, n+1, n+2, \ldots\}$ for $n \in \mathbb{N}$ so that $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \ldots$ Then $\bigcap_{n=1}^{\infty} A_{n}=\emptyset$ and in particular is not infinite.
(b) This is true (finiteness is important).
(c) This is false. Consider $A=B=\{1\}$ and $C=\{2\}$. Then $A \cap(B \cup C)=\{1\}$ but $(A \cap B) \cup C=\{1,2\}$.
(d) This is true.
(e) This is true.

1.2.5(c)

We want to show that if $A, B \subset C$, then $(A \cup B)^{c}=A^{c} \cap B^{c}$.
First let $x \in(A \cup B)^{c}$. Then $x \notin A \cup B$, which means that $x \notin A$ and $x \notin B$. Hence $x \in A^{c}$ and $x \in B^{c}$, so $x \in A^{c} \cap B^{c}$. As x was arbitrary, we have that $(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$.
In the other direction, let $x \in A^{c} \cap B^{c}$. Then $x \in A^{c}$ and $x \in B^{c}$, implying that $x \notin A$ and $x \notin B$. Hence $x \notin A \cup B$, and therefore $x \in(A \cup B)^{c}$. As x was arbitary, we have that $A^{c} \cap B^{c} \subseteq(A \cup B)^{c}$.
As we have shown inclusions in both directions, we conclude that the two sets are equal.

Other Problems

Problem 5

(a) Suppose that $b \in f(C \cap D)$. Then by definition of the image of a set, there must be some $x \in C \cap D$ such that $f(x)=b$. Now, $x \in C$, so it must be the case that $b=f(x) \in f(C)$. But also $x \in D$, so $b=f(x) \in f(D)$. We see that in fact $b \in f(C) \cap f(D)$. As b was an arbitary element of $f(C \cap D)$, we conclude that $f(C \cap D) \subseteq f(C) \cap f(D)$.
(b) Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$. Suppose that $C=[0,1]$, and $D=[-1,0]$, such that $f(C \cap D)=f(\{0\})=\{0\}$. But $f(C)=f(D)=[0,1]$, so we see that $f(C) \cap f(D)=[0,1]$. Hence $f(C \cap D)$ is a proper subset of $f(C) \cap f(D)$.

Problem 6

(a) Given (m, n) such that $m, n \in \mathbb{Z}$ and $n \neq 0$, our proposed equivalence relation \sim is that $(m, n) \sim\left(m^{\prime}, n^{\prime}\right)$ if $m n^{\prime}=m^{\prime} n$. We check three properties:
(i) Reflexivity. We observe that $m n=m n$, so $(m, n) \sim(m, n)$.
(ii) Symmetry. If we have $(m, n) \sim\left(m^{\prime}, n^{\prime}\right)$, then $m n^{\prime}=m^{\prime} n$. But multiplication commutes in the integers, so in fact $n^{\prime} m=n m^{\prime}$. Hence $\left(m^{\prime}, n^{\prime}\right) \sim(m, n)$.
(iii) Transitivity. If we have $(m, n) \sim\left(m^{\prime}, n^{\prime}\right)$ and $\left(m^{\prime}, n^{\prime}\right) \sim\left(m^{\prime \prime}, n^{\prime \prime}\right)$, then $m n^{\prime}=m^{\prime} n$ and $m^{\prime} n^{\prime \prime}=m^{\prime \prime} n^{\prime}$. There are two cases. First, if $m^{\prime}=0$, then since $n, n^{\prime}, n^{\prime \prime} \neq 0$, for the preceding equations to be true, we must also have $m=m^{\prime \prime}=0$. Then certainly $m n^{\prime \prime}=m^{\prime \prime} n$, so we have that $(m, n) \sim\left(m^{\prime \prime}, n^{\prime \prime}\right)$. In the other case, if $m^{\prime} \neq 0$, then multiplying the two previous equations we conclude that $m n^{\prime} m^{\prime} n^{\prime \prime}=m^{\prime} n m^{\prime \prime} n^{\prime}$. As $n^{\prime}, m^{\prime} \neq 0$, we may divide through to obtain $m n^{\prime \prime}=n m^{\prime \prime}$, and conclude that $(m, n) \sim\left(m^{\prime \prime}, n^{\prime \prime}\right)$.
(b) Recall that addition is given by

$$
[(m, n)]+[(p, q)]=[(m q+n p, n q)]
$$

Since this operation clearly commutes, it suffices to check that if $(m, n) \sim\left(m^{\prime}, n^{\prime}\right)$, or in other words if $m n^{\prime}=n m^{\prime}$, it follows that $(m q+n p, n q) \sim\left(m^{\prime} q+n^{\prime} p, n^{\prime} q\right)$ for any (p, q) with $q \neq 0$. In particular we would like to show that

$$
(m q+n p) n^{\prime} q=n q\left(m^{\prime} q+n^{\prime} p\right)
$$

which expands to $m n^{\prime} p q+n n^{\prime} p q=m^{\prime} n p q+n n^{\prime} p q$. This is indeed true if $m n^{\prime}=m^{\prime} n$, so we are satisfied.
Next we consider multiplication. It again suffices to check that if (m, n) $\sim\left(m^{\prime}, n^{\prime}\right)$, or in other words if $m n^{\prime}=n m^{\prime}$, it follows that $(m p, n q) \sim\left(m^{\prime} p, n^{\prime} q\right)$. This requires that $m p n^{\prime} q=n q m^{\prime} p$, which is indeed true if $m n^{\prime}=n m^{\prime}$. So we are satisfied that multiplication is well-defined.

Problem 7

(a) We must first satisfy ourselves that these operations are well-defined. Suppose that $[a]=$ [a^{\prime}], so that $a-a^{\prime}=n k$, and $b-b^{\prime}=m k$, where n and m are some integers. Then we observe that $(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)=n k+m k=(n+m) k$. Since $n+m$ is an integer, we conclude that $[a]+[b]=[a+b]=\left[a^{\prime}+b^{\prime}\right]=\left[a^{\prime}\right]+\left[b^{\prime}\right]$. Hence, addition is well-defined.
Now we turn our attention to multiplication. We observe that $a b-a^{\prime} b^{\prime}=a b-a^{\prime} b+a^{\prime} b-a^{\prime} b^{\prime}=$ $\left(a-a^{\prime}\right) b+a^{\prime}\left(b-b^{\prime}\right)=n k b+a^{\prime} m k=k\left(n b+a^{\prime} m\right)$. As n, m, b, a^{\prime} are integers, we see that $n b+a^{\prime} m$ is an integer, so in fact $[a][b]=[a b]=\left[a^{\prime} b^{\prime}\right]=\left[a^{\prime}\right]\left[b^{\prime}\right]$.
Having checked well-definedness, the field axioms are mostly straightforward consequences of corresponding properties in \mathbb{Z}, with the exception of existence of multiplicative inverses. We proceed through them.
(A1) For all $[a],[b],[c]$ in $\mathbb{Z} / k \mathbb{Z}$, we have that $[a]+([b]+[c])=[a]+[b+c]=[a+(b+c)]=$ $[(a+b)+c]=[a+b]+[c]=([a]+[b])+[c]$.
(A2) For all $[a],[b] \in \mathbb{Z} / k \mathbb{Z}$, we have $[a]+[b]=[a+b]=[b+a]=[b]+[a]$.
(A3) The additive identity element is $[0]$, since for all $[a] \in \mathbb{Z} / k \mathbb{Z}$, we have $[a]+[0]=[a+0]=$ $[a]=[0+a]=[0]+[a]$.
(A4) The additive inverse $-[a]$ of $[a] \in \mathbb{Z} / k \mathbb{Z}$ is the element $[-a]=[p-a]$, since $[a]+[-a]=$ $[a+(-a)]=[0]+[(-a)+a]=[-a]+[a]$.
(M1) For all $[a],[b],[c]$ in $\mathbb{Z} / k \mathbb{Z}$, we have $[a]([b][c])=[a]([b c])=[a(b c)]=[(a b) c]=[a b][c]=$ $([a][b])[c]$.
(M2) For all $[a],[b] \in \mathbb{Z} / k \mathbb{Z}$, we have $[a][b]=[a b]=[b a]=[b][a]$.
(M3) The multiplicative identity element is $[1]$, since for all $[a] \in \mathbb{Z} / k \mathbb{Z}$, we have $[a][1]=[a(1)]=$ $[a]=[1(a)]=[1][a]$.
(DL) For all $[a],[b],[c] \in \mathbb{Z} k \mathbb{Z}$, we have $[a]([b]+[c])=[a]([b+c])=[a(b+c)]=[a b+a c]=$ $[a b]+[a c]=[a][b]+[a][c]$.
(b) Observe that in $\mathbb{Z} / 4 \mathbb{Z}$, there is no multiplicative inverse of $[2]$. For, indeed, $[2][0]=[0]$, $[2][1]=[2],[2][2]=[4]=[0]$, and $[2][3]=[6]=[2]$, and none of these is [1]. More abstractly, we note that for any integer $a, 2 a$ is even; but if $[b]=[1]$, then $b-1=4 n$ for some integer n, so we have $b=4 n+1$, which is odd.
(c) Let $[a] \neq[0]$ in $\mathbb{Z} / p \mathbb{Z}$. Note that $[a]$ is not divisible by $[p]$. Recall that the elements of $\mathbb{Z} / p \mathbb{Z}$ can be listed as $\{[0], \ldots,[p-1]\}$. Consider the elements $\{[a(0)], \ldots,[a(p-1)]\}$. We claim these p elements are distinct. For, suppose that $[a b]=[a c]$ for some $0 \leq b<c \leq p-1$. Then $a b-a c=a(b-c)$ is divisible by p. But a is not divisible by p, and $b-c$ is a nonzero integer with $-(p-1) \leq b-c \leq p-1$, and therefore also not divisible by p. So, this is a list of p distinct elements of $\mathbb{Z} / p \mathbb{Z}$. One of the elements on this list $[a][b]$ must then be [1]. By commutativity, it is also true that $[b][a]=[1]$. So, $[b]$ is the multiplicative inverse of $[a]$.
(d) In $\mathbb{Z} / 3 \mathbb{Z}$, we have $[2][2]=[4]=[1]$, so the multiplicative inverse of $[2]$ is $[2]$. In $\mathbb{Z} / 5 \mathbb{Z}$, we have $[2][3]=[6]=[1]$, so the multiplicative inverse of $[2]$ is $[3]$.

