Homework 2 Solutions

September 10, 2023

Section 1.2

Problem 1.2.3

(a) This is false; let A, = {n,n+1,n+2,...} for n € Nso that A; O A2 O A3 D .... Then
No_; A, = 0 and in particular is not infinite.

(b) This is true (finiteness is important).

(c) This is false. Consider A = B = {1} and C = {2}. Then AN (BUC) = {1} but
(ANB)UC ={1,2}.

(d) This is true.
(e) This is true.

1.2.5(c)

We want to show that if A, B C C, then (AU B)¢ = A°N B°.

First let z € (AU B)¢. Then x ¢ AU B, which means that © ¢ A and = ¢ B. Hence x € A° and
x € B¢, so x € A°N B¢. As x was arbitrary, we have that (AU B)¢ C A°N B°.

In the other direction, let © € A°N B¢. Then z € A° and = € B¢, implying that z ¢ A and
x ¢ B. Hence x ¢ AU B, and therefore z € (AU B)°. As x was arbitary, we have that
A°NB¢C (AU B)“.

As we have shown inclusions in both directions, we conclude that the two sets are equal.

Other Problems

Problem 5

(a) Suppose that b € f(C N D). Then by definition of the image of a set, there must be some
x € C'N D such that f(x) =b. Now, x € C, so it must be the case that b = f(x) € f(C). But
also z € D, so b= f(x) € f(D). We see that in fact b € f(C) N f(D). As b was an arbitary
element of f(C'N D), we conclude that f(C' N D) C f(C)N f(D).



(b) Consider the function f : R — R given by f(z) = 22. Suppose that C = [0,1], and
D = [-1,0], such that f(CND)= f({0}) = {0}. But f(C) = f(D) = [0,1], so we see that
f(C)N f(D) =10,1]. Hence f(C' N D) is a proper subset of f(C)N f(D).

Problem 6

(a) Given (m,n) such that m,n € Z and n # 0, our proposed equivalence relation ~ is that
(m,n) ~ (m’,n’) if mn’ = m'n. We check three properties:

(i) Reflexivity. We observe that mn = mn, so (m,n) ~ (m,n).

(ii) Symmetry. If we have (m,n) ~ (m’,n’), then mn’ = m/n. But multiplication commutes in
the integers, so in fact n’m = nm’. Hence (m/,n’) ~ (m,n).

(iii) Transitivity. If we have (m,n) ~ (m’,n’) and (m’,n’) ~ (m”,n”), then mn’ = m/n and
m/n” = m”n’. There are two cases. First, if m’ = 0, then since n,n’,n” # 0, for the preceding
equations to be true, we must also have m = m” = 0. Then certainly mn” = m’n, so we
have that (m,n) ~ (m”,n”). In the other case, if m’ # 0, then multiplying the two previous
equations we conclude that mn'm/n” = m/nm’n’. As n’,m’ # 0, we may divide through to

obtain mn” = nm”, and conclude that (m,n) ~ (m”,n").

(b) Recall that addition is given by

[((m,n)] + [(p, @)] = [(mg + np,nq)].

Since this operation clearly commutes, it suffices to check that if (m,n) ~ (m/,n), or in other
words if mn’ = nm/, it follows that (mq + np,nq) ~ (m'q + n'p,n’q) for any (p,q) with q # 0.
In particular we would like to show that

(mg + np)n'q = ng(m'q + n'p)

which expands to mn'pg + nn’pqg = m/npq + nn'pq. This is indeed true if mn’ = m'n, so we are
satisfied.

Next we consider multiplication. It again suffices to check that if (m,n) ~ (m/,n’), or in other
words if mn’ = nm/, it follows that (mp,ng) ~ (m’p,n’q). This requires that mpn’'q = ngm/'p,
which is indeed true if mn’ = nm/. So we are satisfied that multiplication is well-defined.

Problem 7

(a) We must first satisfy ourselves that these operations are well-defined. Suppose that [a] =
[a], so that a — o' = nk, and b — b’ = mk, where n and m are some integers. Then we observe
that (a +b) — (d + ) =(a—d')+ (b—V) =nk +mk = (n+ m)k. Since n + m is an integer,
we conclude that [a] + [b] = [a + b] = [/ + V'] = [a/] + [V/]. Hence, addition is well-defined.

Now we turn our attention to multiplication. We observe that ab—a'b’ = ab—a’b+ad’b—d'b' =
(a—a)b+ad (b—V) = nkb+a'mk = k(nb+a'm). As n,m,b,a’ are integers, we see that nb+a'm
is an integer, so in fact [a][b] = [ab] = [a'V] = [][V'].

Having checked well-definedness, the field axioms are mostly straightforward consequences of
corresponding properties in Z, with the exception of existence of multiplicative inverses. We
proceed through them.

(A1) For all [a], [b], [c] in Z/KZ, we have that [a] + ([b] +[c]) = [a] +[b+¢c] =[a+ (b+¢)] =
[(a+b) +c] = la+b]+ [c] = (la] + [b]) + [c].



(A2) For all [a], [b] € Z/kZ, we have [a] + [b] = [a + b] = [b+ a] = [b] + [a].

(A3) The additive identity element is [0], since for all [a] € Z/kZ, we have [a] + [0] = [a + 0] =
al = [0+ a] = [0] + [a].

(A4) The additive inverse —[a] of [a] € Z/kZ is the element [—a] = [p — a], since [a] + [—a] =
a+(—a)] =[0] + [(—a) + a] = [~a] + [a].

l))])l?o]r all [a], [b], [c] in Z/kZ, we have [a]([b][c]) = [a]([bc]) = [a(bc)] = [(ab)c] = [ab][c] =
) )
)

a] = [1(a)] = [1][a].
For all [al,[b],[c] € Z KZ, we have [a]([b] + [c]) = [a]([b+ ¢]) = [a(b+ ¢)] = [ab + ac] =
lac] = [a][b] + [a][c].

=
=
_|_\_/

(b) Observe that in Z/47Z, there is no multiplicative inverse of [2]. For, indeed, [2][0] = [0],
[2][1] = [2], [2][2] = [4] = [0], and [2][3] = [6] = [2], and none of these is [1]. More abstractly, we
note that for any integer a, 2a is even; but if [b] = [1], then b — 1 = 4n for some integer n, so we
have b = 4n + 1, which is odd.

(c) Let [a] # [0] in Z/pZ. Note that [a] is not divisible by [p]. Recall that the elements of
Z/pZ can be listed as {[0], ..., [p—1]}. Consider the elements {[a(0)],...,[a(p—1)]}. We claim
these p elements are distinct. For, suppose that [ab] = [ac] for some 0 < b < ¢ < p— 1. Then
ab — ac = a(b — ¢) is divisible by p. But a is not divisible by p, and b — ¢ is a nonzero integer
with —(p—1) < b—c¢ < p—1, and therefore also not divisible by p. So, this is a list of p distinct
elements of Z/pZ. One of the elements on this list [a][b] must then be [1]. By commutativity, it
is also true that [b][a] = [1]. So, [b] is the multiplicative inverse of [a].

(d) In Z/3Z, we have [2][2] = [4] = [1], so the multiplicative inverse of [2] is [2]. In Z/5Z, we
have [2][3] = [6] = [1], so the multiplicative inverse of [2] is [3].



