
Homework 2 Solutions

September 10, 2023

Section 1.2

Problem 1.2.3

(a) This is false; let An = {n, n + 1, n + 2, . . . } for n ∈ N so that A1 ⊇ A2 ⊇ A3 ⊇ . . . . Then⋂∞
n=1An = ∅ and in particular is not infinite.

(b) This is true (finiteness is important).

(c) This is false. Consider A = B = {1} and C = {2}. Then A ∩ (B ∪ C) = {1} but
(A ∩B) ∪ C = {1, 2}.

(d) This is true.

(e) This is true.

1.2.5(c)

We want to show that if A,B ⊂ C, then (A ∪B)c = Ac ∩Bc.

First let x ∈ (A∪B)c. Then x /∈ A∪B, which means that x /∈ A and x /∈ B. Hence x ∈ Ac and
x ∈ Bc, so x ∈ Ac ∩Bc. As x was arbitrary, we have that (A ∪B)c ⊆ Ac ∩Bc.

In the other direction, let x ∈ Ac ∩ Bc. Then x ∈ Ac and x ∈ Bc, implying that x /∈ A and
x /∈ B. Hence x /∈ A ∪ B, and therefore x ∈ (A ∪ B)c. As x was arbitary, we have that
Ac ∩Bc ⊆ (A ∪B)c.

As we have shown inclusions in both directions, we conclude that the two sets are equal.

Other Problems

Problem 5

(a) Suppose that b ∈ f(C ∩D). Then by definition of the image of a set, there must be some
x ∈ C ∩D such that f(x) = b. Now, x ∈ C, so it must be the case that b = f(x) ∈ f(C). But
also x ∈ D, so b = f(x) ∈ f(D). We see that in fact b ∈ f(C) ∩ f(D). As b was an arbitary
element of f(C ∩D), we conclude that f(C ∩D) ⊆ f(C) ∩ f(D).
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(b) Consider the function f : R → R given by f(x) = x2. Suppose that C = [0, 1], and
D = [−1, 0], such that f(C ∩ D) = f({0}) = {0}. But f(C) = f(D) = [0, 1], so we see that
f(C) ∩ f(D) = [0, 1]. Hence f(C ∩D) is a proper subset of f(C) ∩ f(D).

Problem 6

(a) Given (m,n) such that m,n ∈ Z and n ̸= 0, our proposed equivalence relation ∼ is that
(m,n) ∼ (m′, n′) if mn′ = m′n. We check three properties:

(i) Reflexivity. We observe that mn = mn, so (m,n) ∼ (m,n).

(ii) Symmetry. If we have (m,n) ∼ (m′, n′), then mn′ = m′n. But multiplication commutes in
the integers, so in fact n′m = nm′. Hence (m′, n′) ∼ (m,n).

(iii) Transitivity. If we have (m,n) ∼ (m′, n′) and (m′, n′) ∼ (m′′, n′′), then mn′ = m′n and
m′n′′ = m′′n′. There are two cases. First, if m′ = 0, then since n, n′, n′′ ̸= 0, for the preceding
equations to be true, we must also have m = m′′ = 0. Then certainly mn′′ = m′′n, so we
have that (m,n) ∼ (m′′, n′′). In the other case, if m′ ̸= 0, then multiplying the two previous
equations we conclude that mn′m′n′′ = m′nm′′n′. As n′,m′ ̸= 0, we may divide through to
obtain mn′′ = nm′′, and conclude that (m,n) ∼ (m′′, n′′).

(b) Recall that addition is given by

[(m,n)] + [(p, q)] = [(mq + np, nq)].

Since this operation clearly commutes, it suffices to check that if (m,n) ∼ (m′, n′), or in other
words if mn′ = nm′, it follows that (mq + np, nq) ∼ (m′q + n′p, n′q) for any (p, q) with q ̸= 0.
In particular we would like to show that

(mq + np)n′q = nq(m′q + n′p)

which expands to mn′pq + nn′pq = m′npq + nn′pq. This is indeed true if mn′ = m′n, so we are
satisfied.

Next we consider multiplication. It again suffices to check that if (m,n) ∼ (m′, n′), or in other
words if mn′ = nm′, it follows that (mp, nq) ∼ (m′p, n′q). This requires that mpn′q = nqm′p,
which is indeed true if mn′ = nm′. So we are satisfied that multiplication is well-defined.

Problem 7

(a) We must first satisfy ourselves that these operations are well-defined. Suppose that [a] =
[a′], so that a− a′ = nk, and b− b′ = mk, where n and m are some integers. Then we observe
that (a+ b)− (a′ + b′) = (a− a′) + (b− b′) = nk +mk = (n+m)k. Since n+m is an integer,
we conclude that [a] + [b] = [a+ b] = [a′ + b′] = [a′] + [b′]. Hence, addition is well-defined.

Now we turn our attention to multiplication. We observe that ab− a′b′ = ab− a′b+ a′b− a′b′ =
(a−a′)b+a′(b−b′) = nkb+a′mk = k(nb+a′m). As n,m, b, a′ are integers, we see that nb+a′m
is an integer, so in fact [a][b] = [ab] = [a′b′] = [a′][b′].

Having checked well-definedness, the field axioms are mostly straightforward consequences of
corresponding properties in Z, with the exception of existence of multiplicative inverses. We
proceed through them.

(A1) For all [a], [b], [c] in Z/kZ, we have that [a] + ([b] + [c]) = [a] + [b + c] = [a + (b + c)] =
[(a+ b) + c] = [a+ b] + [c] = ([a] + [b]) + [c].



(A2) For all [a], [b] ∈ Z/kZ, we have [a] + [b] = [a+ b] = [b+ a] = [b] + [a].
(A3) The additive identity element is [0], since for all [a] ∈ Z/kZ, we have [a] + [0] = [a+ 0] =
[a] = [0 + a] = [0] + [a].
(A4) The additive inverse −[a] of [a] ∈ Z/kZ is the element [−a] = [p − a], since [a] + [−a] =
[a+ (−a)] = [0] + [(−a) + a] = [−a] + [a].
(M1) For all [a], [b], [c] in Z/kZ, we have [a]([b][c]) = [a]([bc]) = [a(bc)] = [(ab)c] = [ab][c] =
([a][b])[c].
(M2) For all [a], [b] ∈ Z/kZ, we have [a][b] = [ab] = [ba] = [b][a].
(M3) The multiplicative identity element is [1], since for all [a] ∈ Z/kZ, we have [a][1] = [a(1)] =
[a] = [1(a)] = [1][a].
(DL) For all [a], [b], [c] ∈ Z kZ, we have [a]([b] + [c]) = [a]([b + c]) = [a(b + c)] = [ab + ac] =
[ab] + [ac] = [a][b] + [a][c].

(b) Observe that in Z/4Z, there is no multiplicative inverse of [2]. For, indeed, [2][0] = [0],
[2][1] = [2], [2][2] = [4] = [0], and [2][3] = [6] = [2], and none of these is [1]. More abstractly, we
note that for any integer a, 2a is even; but if [b] = [1], then b− 1 = 4n for some integer n, so we
have b = 4n+ 1, which is odd.

(c) Let [a] ̸= [0] in Z/pZ. Note that [a] is not divisible by [p]. Recall that the elements of
Z/pZ can be listed as {[0], . . . , [p− 1]}. Consider the elements {[a(0)], . . . , [a(p− 1)]}. We claim
these p elements are distinct. For, suppose that [ab] = [ac] for some 0 ≤ b < c ≤ p − 1. Then
ab − ac = a(b − c) is divisible by p. But a is not divisible by p, and b − c is a nonzero integer
with −(p− 1) ≤ b− c ≤ p− 1, and therefore also not divisible by p. So, this is a list of p distinct
elements of Z/pZ. One of the elements on this list [a][b] must then be [1]. By commutativity, it
is also true that [b][a] = [1]. So, [b] is the multiplicative inverse of [a].

(d) In Z/3Z, we have [2][2] = [4] = [1], so the multiplicative inverse of [2] is [2]. In Z/5Z, we
have [2][3] = [6] = [1], so the multiplicative inverse of [2] is [3].


