Homework 12 Solutions

November 20, 2023

Section 5.2

Problem 5.2.2

(a) Possible. Let $f(x)=x^{\frac{1}{3}}$ and $g(x)=x^{\frac{2}{3}}$, such that neither f nor g is differentiable at 0 but $f g(x)=x$ is.
(b) Possible. Let $g(x) \equiv 0$ be the constant zero function and $f(x)$ be any function not differentiable at 0 . Then $f g(x) \equiv 0$ is differentiable at 0 . [Note that if we added the hypothesis that $g(0)$ and $g^{\prime}(0)$ are nonzero, this would become impossible - why?]
(c) Impossible. Suppose g and $f+g$ are both differentiable at zero. Then $f=(f+g)-g$ is also differentiable at 0 by the Algebraic Differentiability Theorem.
(d) Possible. Consider

$$
f(x)= \begin{cases}x^{2} & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

which we saw in class is differentiable only at $c=0$.

0.1 Problem 5.2.9

(a) True; derivatives have the intermediate value property and therefore if the derivative of f is defined on an interval A and not constant, its image $f^{\prime}(A)$ is a nondegenerate interval (that is, not a single point), and therefore contains irrational values.
(b) False. Consider the example

$$
f(x)= \begin{cases}2 x^{2} \sin \left(\frac{1}{x}\right)+x & x>0 \\ x & x \leq 0\end{cases}
$$

whose derivative is

$$
f^{\prime}(x)= \begin{cases}4 x \sin \left(\frac{1}{x}\right)-2 \cos \left(\frac{1}{x}\right)+1 & x>0 \\ 1 & x \leq 0\end{cases}
$$

We see that $f^{\prime}(0)=1>0$. However, for any $\epsilon>0$, choose n a natural number large enough that $x=\frac{1}{2 \pi n}<\epsilon$. Then $f^{\prime}(x)=0-2+1=-1$. So there is no interval around 0 on which $f^{\prime}(x)$ is nonzero.
(c) True. For suppose not, then we have $f^{\prime}(0)=a$ and $\lim _{x \rightarrow 0} f^{\prime}(x)=L$ for $L \neq a$. Let $\epsilon=\frac{1}{2}|a-L|$, and choose δ such that $0<|x-0|<\delta$ implies $\left|f^{\prime}(x)-L\right|<\epsilon$. So on the interval $(-\delta, \delta)$, the image of f^{\prime} lies entirely inside the interval $(L-\epsilon, L+\epsilon)$ except that it contains the point a which is outside this interval. This is a contradiction, since derivatives have the intermediate value property, which implies that the image of an interval under the derivative function is an interval.

Section 5.3

Problem 5.3.2

Suppose f is differentiable on an interval A. Then f is also continuous on A. Suppose that f is not one-to-one on A, that is, suppose there is some $x<y$ such that $f(x)=f(y)$. Then by the Mean Value Theorem applied to $[x, y]$, there is some $c \in(x, y)$ such that

$$
f^{\prime}(c)=\frac{f(y)-f(x)}{x-y}=\frac{0}{x-y}=0
$$

This implies that $f^{\prime}(c)=0$. So, if $f^{\prime}(c) \neq 0$ on all of A, f must be one-to-one on A.
The converse is not true by considering the example of $f(x)=x^{3}$, which is one-to-one on \mathbb{R} but has $f^{\prime}(0)=0$.

Problem 5.3.3

We have h a differentiable, and therefore also continuous, function on $[0,3]$ such that $h(0)=1$, $h(1)=2$, and $h(3)=2$.
(a) Consider the function $f(x)=h(x)-x$. We observe that $f(0)=1-0=1>0$ and $f(3)=2-3=-1<0$. By the Intermediate Value Theorem, we see there is a point d in $(0,3)$ at which $f(d)=0$, which means that $h(d)=d$.
(b) By the Mean Value Theorem, there is some $c \in(0,3)$ with the property that

$$
h^{\prime}(c)=\frac{h(3)-h(0)}{3-0}=\frac{2-1}{3}=\frac{1}{3} .
$$

(c) By Rolle's Theorem, since $h(1)=h(3)$, there is some $e \in(1,3)$ with the property that $h^{\prime}(e)=0$. Now, recall that derivatives have the intermediate value property; the image of an interval under the derivative is an interval. We have seen that $h^{\prime}([0,3])$ contains 0 and $\frac{1}{3}$; ergo, it contains all values between them, including $\frac{1}{4}$. So there is some point x in the domain for which $h^{\prime}(x)=\frac{1}{4}$.

Other Problems

0.2 Problem 4

Let $y<x$ be two real numbers. Since $f(x)=\cos x$ is continuous and differentiable with derivative $f^{\prime}(x)=-\sin x$ everywhere, the Mean Value Theorem tells us there is some $c \in(y, x)$ with the property that

$$
-\sin c=\frac{\cos x-\cos y}{x-y}
$$

But $|-\sin c| \leq 1$. So

$$
1 \geq \frac{|\cos x-\cos y|}{|x-y|}
$$

implying that $|x-y| \geq|\cos x-\cos y|$.

0.3 Problem 5

(a) To evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$, we observe that the numerator and denominator are both differentiable on a neighborhood of 0 and both evaluate to 0 at 0 . So we may apply L'Hospital's Rule to see that

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}
$$

if we can show that the limit on the right exists. However, we see that $\frac{\sin x}{2 x}$ still has the property that both the numerator and denominator are differentiable on a neighborhood of 0 and both evaluate to 0 at 0 . Ergo we apply L'Hospital's Rule again, seeing that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\lim _{x \rightarrow 0} \frac{\cos x}{2}=\frac{1}{2}
$$

We conclude that $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1}{2}$.
(b) To evaluate $\lim _{x \rightarrow 0}\left[\frac{1}{\sin x}-\frac{1}{x}\right]$, we first rewrite the limit as

$$
\lim _{x \rightarrow 0} \frac{x-\sin x}{x \sin x}
$$

We use two successive applications of L'Hospital's Rule, noting at each step that the numerator and denominator are both differentiable on a neighborhood of 0 and evaluate to 0 at 0 , to observe that

$$
\lim _{x \rightarrow 0} \frac{x-\sin x}{x \sin x}=\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x+x \cos x}=\lim _{x \rightarrow 0} \frac{\sin x}{2 \cos x-x \sin x}=\frac{0}{2-0}=0
$$

(c) To evaluate $\lim _{x \rightarrow 0}(1+2 x)^{\frac{1}{x}}$, we in fact start by computing $\lim _{x \rightarrow 0} \ln \left[(1+2 x)^{\frac{1}{x}}\right]$. We observe that

$$
\ln \left[(1+2 x)^{\frac{1}{x}}\right]=\frac{1}{x} \cdot \ln (1+2 x)=\frac{\ln (1+2 x)}{x}
$$

Since $\ln (1+2 x)$ and x are both differentiable on a neighborhood of 1 and both evaluate to 0 at 0 , we apply L'Hospital's Rule to see that

$$
\lim _{x \rightarrow 0} \frac{\ln (1+2 x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{2}{1+2 x}}{1}=2
$$

Now we finish the problem. Since the function e^{x} is continuous on \mathbb{R}, we have that

$$
\begin{aligned}
\lim _{x \rightarrow 0}(1+2 x)^{\frac{1}{x}} & =\lim _{x \rightarrow 0} e^{\ln \left[(1+2 x)^{\frac{1}{x}}\right]} \\
& =e^{\lim _{x \rightarrow 0} \ln \left[(1+2 x)^{\frac{1}{x}}\right]} \\
& =e^{2}
\end{aligned}
$$

Problem 6

(a) We may consider the constant functions.
(b) Recall from Midterm 2 that a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is determined by its values on the rational numbers, and therefore by the sequence $\left(f\left(r_{1}\right), f\left(r_{2}\right), \ldots\right)$ where $\left(r_{1}, r_{2}, r_{3}, \ldots\right)$ is any enumeration of the rationals. Therefore the set A of functions continuous on all of \mathbb{R} injects into the set of sequences of real numbers.
0.3.1 (c) By applying the bijection between $(0,1)$ and \mathbb{R} to part (b) we can in fact inject A into the set of sequences of elements of $(0,1)$. Now we construct an injection from the set of sequences of elements of $(0,1)$ into $(0,1)$ itself, and then apply the bijection between $(0,1)$ and \mathbb{R}). For this purpose, let

$$
\left(. x_{11} x_{12} x_{13} \ldots, . x_{21} x_{22} x_{23} \ldots, . x_{31} x_{32} x_{33}, \ldots\right)
$$

be a sequence of real numbers in $(0,1)$, written as their base ten decimal expansions, none of which terminate in a string of infinite 9 's. Then we may construct a real number

$$
. x_{11} x_{12} x_{21} x_{13} x_{22} x_{31} \ldots
$$

by going along the finite diagonals of a grid of all of the digits involved; note that it does not conclude with a string of infinite 9 's, because this would require all of the original numbers in the sequence to do so. (Note that it is not immediately obvious this map is a bijection, because of the issue of strings of 9 's.) Finally, we include $(0,1)$ into \mathbb{R} to show A injects into \mathbb{R}.
(d) We see that \mathbb{R} injects into A and A injects into \mathbb{R}, so A and \mathbb{R} have the same cardinality. Likewise for B.
(e) Notice that the power set $P(\mathbb{R})$ can be regarded as a subset of C via the following method: if $S \subset \mathbb{R}$ is a subset of \mathbb{R}, we may consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ by setting $f(x)=1$ if $x \in \mathbb{R}$ and $f(x)=0$ otherwise. From Theorem 1.6.2, $P(\mathbb{R})$ has cardinality larger than \mathbb{R}. Therefore so does C.

Problem 7

Let $f(x)$ be as in the problem statement. We showed in class this is infinitely differentiable. Here are the appropriate functions:
(a) Let $f_{a}(x)=f(x-a)$.
(b)Let $g_{b}(x)=f(b-x)$.
(c) Let $h_{a, b}(x)=f_{a}(x) g_{b}(x)$.
(d) Let $j_{a, b}(x)=\frac{f_{a}(x)}{f_{a}(x)+g_{b}(x)}$. Notice that for $x \geq b, j_{a, b}(x)=\frac{f_{a}(x)}{f_{a}(x)+0}=1$. Furthermore, we claim that that $f_{a}(x)+g_{b}(x)>0$ on all x : on $x \leq a, f_{a}(x)=0$ and $g_{b}(x)>0$, on $a<x<b$, both $f_{a}(x)>0$ and $g_{b}(x)>0$, and on $x \geq b, f_{a}(x)>0$ and $g_{b}(x)=0$. So the denominator is always positive and $j_{a, b}$ is infinitely differentiable.

