
Homework 12 Solutions

November 20, 2023

Section 5.2

Problem 5.2.2

(a) Possible. Let f(x) = x
1
3 and g(x) = x

2
3 , such that neither f nor g is differentiable at 0 but

fg(x) = x is.

(b) Possible. Let g(x) ≡ 0 be the constant zero function and f(x) be any function not differ-
entiable at 0. Then fg(x) ≡ 0 is differentiable at 0. [Note that if we added the hypothesis that
g(0) and g′(0) are nonzero, this would become impossible – why?]

(c) Impossible. Suppose g and f + g are both differentiable at zero. Then f = (f + g) − g is
also differentiable at 0 by the Algebraic Differentiability Theorem.

(d) Possible. Consider

f(x) =

{
x2 x ∈ Q
0 x /∈ Q

which we saw in class is differentiable only at c = 0.

0.1 Problem 5.2.9

(a) True; derivatives have the intermediate value property and therefore if the derivative of f
is defined on an interval A and not constant, its image f ′(A) is a nondegenerate interval (that
is, not a single point), and therefore contains irrational values.

(b) False. Consider the example

f(x) =

{
2x2 sin

(
1
x

)
+ x x > 0

x x ≤ 0

whose derivative is

f ′(x) =

{
4x sin

(
1
x

)
− 2 cos

(
1
x

)
+ 1 x > 0

1 x ≤ 0

We see that f ′(0) = 1 > 0. However, for any ϵ > 0, choose n a natural number large enough
that x = 1

2πn < ϵ. Then f ′(x) = 0− 2+1 = −1. So there is no interval around 0 on which f ′(x)
is nonzero.
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(c) True. For suppose not, then we have f ′(0) = a and limx→0 f
′(x) = L for L ̸= a. Let

ϵ = 1
2 |a− L|, and choose δ such that 0 < |x− 0| < δ implies |f ′(x)− L| < ϵ. So on the interval

(−δ, δ), the image of f ′ lies entirely inside the interval (L − ϵ, L + ϵ) except that it contains
the point a which is outside this interval. This is a contradiction, since derivatives have the
intermediate value property, which implies that the image of an interval under the derivative
function is an interval.

Section 5.3

Problem 5.3.2

Suppose f is differentiable on an interval A. Then f is also continuous on A. Suppose that f is
not one-to-one on A, that is, suppose there is some x < y such that f(x) = f(y). Then by the
Mean Value Theorem applied to [x, y], there is some c ∈ (x, y) such that

f ′(c) =
f(y)− f(x)

x− y
=

0

x− y
= 0

This implies that f ′(c) = 0. So, if f ′(c) ̸= 0 on all of A, f must be one-to-one on A.
The converse is not true by considering the example of f(x) = x3, which is one-to-one on R

but has f ′(0) = 0.

Problem 5.3.3

We have h a differentiable, and therefore also continuous, function on [0, 3] such that h(0) = 1,
h(1) = 2, and h(3) = 2.

(a) Consider the function f(x) = h(x) − x. We observe that f(0) = 1 − 0 = 1 > 0 and
f(3) = 2− 3 = −1 < 0. By the Intermediate Value Theorem, we see there is a point d in (0, 3)
at which f(d) = 0, which means that h(d) = d.

(b) By the Mean Value Theorem, there is some c ∈ (0, 3) with the property that

h′(c) =
h(3)− h(0)

3− 0
=

2− 1

3
=

1

3
.

(c) By Rolle’s Theorem, since h(1) = h(3), there is some e ∈ (1, 3) with the property that
h′(e) = 0. Now, recall that derivatives have the intermediate value property; the image of an
interval under the derivative is an interval. We have seen that h′([0, 3]) contains 0 and 1

3 ; ergo,
it contains all values between them, including 1

4 . So there is some point x in the domain for
which h′(x) = 1

4 .

Other Problems

0.2 Problem 4

Let y < x be two real numbers. Since f(x) = cosx is continuous and differentiable with
derivative f ′(x) = − sinx everywhere, the Mean Value Theorem tells us there is some c ∈ (y, x)
with the property that

− sin c =
cosx− cos y

x− y



But | − sin c| ≤ 1. So

1 ≥ | cosx− cos y|
|x− y|

implying that |x− y| ≥ | cosx− cos y|.

0.3 Problem 5

(a) To evaluate limx→0
1−cosx

x2 , we observe that the numerator and denominator are both dif-
ferentiable on a neighborhood of 0 and both evaluate to 0 at 0. So we may apply L’Hospital’s
Rule to see that

lim
x→0

1− cosx

x2
= lim

x→0

sinx

2x

if we can show that the limit on the right exists. However, we see that sinx
2x still has the property

that both the numerator and denominator are differentiable on a neighborhood of 0 and both
evaluate to 0 at 0. Ergo we apply L’Hospital’s Rule again, seeing that

lim
x→0

sinx

2x
= lim

x→0

cosx

2
=

1

2

We conclude that limx→0
1−cosx

x2 = 1
2 .

(b) To evaluate limx→0

[
1

sinx − 1
x

]
, we first rewrite the limit as

lim
x→0

x− sinx

x sinx

We use two successive applications of L’Hospital’s Rule, noting at each step that the numerator
and denominator are both differentiable on a neighborhood of 0 and evaluate to 0 at 0, to observe
that

lim
x→0

x− sinx

x sinx
= lim

x→0

1− cosx

sinx+ x cosx
= lim

x→0

sinx

2 cosx− x sinx
=

0

2− 0
= 0.

(c) To evaluate limx→0(1+2x)
1
x , we in fact start by computing limx→0 ln[(1+2x)

1
x ]. We observe

that

ln[(1 + 2x)
1
x ] =

1

x
· ln(1 + 2x) =

ln(1 + 2x)

x
.

Since ln(1 + 2x) and x are both differentiable on a neighborhood of 1 and both evaluate to 0 at
0, we apply L’Hospital’s Rule to see that

lim
x→0

ln(1 + 2x)

x
= lim

x→0

2
1+2x

1
= 2.

Now we finish the problem. Since the function ex is continuous on R, we have that

lim
x→0

(1 + 2x)
1
x = lim

x→0
eln[(1+2x)

1
x ]

= elimx→0 ln[(1+2x)
1
x ]

= e2.

Problem 6

(a) We may consider the constant functions.



(b) Recall from Midterm 2 that a continuous function f : R → R is determined by its values on
the rational numbers, and therefore by the sequence (f(r1), f(r2), . . . ) where (r1, r2, r3, . . . ) is
any enumeration of the rationals. Therefore the set A of functions continuous on all of R injects
into the set of sequences of real numbers.

0.3.1 (c) By applying the bijection between (0, 1) and R to part (b) we can in fact inject A
into the set of sequences of elements of (0, 1). Now we construct an injection from the set of
sequences of elements of (0, 1) into (0, 1) itself, and then apply the bijection between (0, 1) and
R). For this purpose, let

(.x11x12x13 . . . , .x21x22x23 . . . , .x31x32x33, . . . )

be a sequence of real numbers in (0, 1), written as their base ten decimal expansions, none of
which terminate in a string of infinite 9’s. Then we may construct a real number

.x11x12x21x13x22x31 . . .

by going along the finite diagonals of a grid of all of the digits involved; note that it does not
conclude with a string of infinite 9’s, because this would require all of the original numbers in
the sequence to do so. (Note that it is not immediately obvious this map is a bijection, because
of the issue of strings of 9’s.) Finally, we include (0, 1) into R to show A injects into R.

(d) We see that R injects into A and A injects into R, so A and R have the same cardinality.
Likewise for B.

(e) Notice that the power set P (R) can be regarded as a subset of C via the following method:
if S ⊂ R is a subset of R, we may consider the function f : R → R by setting f(x) = 1 if x ∈ R
and f(x) = 0 otherwise. From Theorem 1.6.2, P (R) has cardinality larger than R. Therefore so
does C.

Problem 7

Let f(x) be as in the problem statement. We showed in class this is infinitely differentiable.
Here are the appropriate functions:

(a) Let fa(x) = f(x− a).

(b)Let gb(x) = f(b− x).

(c) Let ha,b(x) = fa(x)gb(x).

(d) Let ja,b(x) = fa(x)
fa(x)+gb(x)

. Notice that for x ≥ b, ja,b(x) = fa(x)
fa(x)+0 = 1. Furthermore, we

claim that that fa(x) + gb(x) > 0 on all x: on x ≤ a, fa(x) = 0 and gb(x) > 0, on a < x < b,
both fa(x) > 0 and gb(x) > 0, and on x ≥ b, fa(x) > 0 and gb(x) = 0. So the denominator is
always positive and ja,b is infinitely differentiable.


