MATH 311H: Homework 12

Due: December 4 at 5 pm

- 1. Office hours this week are Monday, November 27 2-3 on Zoom at Meeting ID 570 840 4797 with passcode cycle, and Thursday, November 30 10-11 in LSH 102D.
- 2. Read Sections 5.2-4, 6.1-3 in Abbott.
- 3. Do exercises 5.2.2, 5.2.9^{*}, 5.3.2, 5.3.3^{*} in Abbott.
- 4. Prove that $|\cos x \cos y| \le |x y|$ for all x and y in \mathbb{R} .
- 5. Find the following limits if they exist.

 - $\lim_{x\to 0} \frac{1-\cos x}{x^2}$ $\lim_{x\to 0} \left[\frac{1}{\sin x} \frac{1}{x}\right]$
 - $\lim_{x \to 0} (1+2x)^{\frac{1}{x}}$
- 6. Let A be the set of functions $f: \mathbb{R} \to \mathbb{R}$ which are continuous at every point of \mathbb{R} and B be the set of functions $q: \mathbb{R} \to \mathbb{R}$ which are differentiable at every point of \mathbb{R} . Let C be the set of all functions $h : \mathbb{R} \to \mathbb{R}^*$
 - (a) Prove that there are injections $\mathbb{R} \hookrightarrow A$ and $\mathbb{R} \hookrightarrow B$.
 - (b) Prove that A injects into the set S of sequences of real numbers, and therefore that $B \subseteq A$ does as well. Hint: Recall Problem 2 on Midterm 2.
 - (c) Show that the set of sequences of elements of (0,1) injects into (0,1). Use this to conclude that A injects into \mathbb{R} , and therefore B does as well. Hint: Decimal expansions and diagonals.
 - (d) Use Exercise 1.5.11 (you do not need to prove it) to conclude that both A and B have the same cardinality of \mathbb{R} .
 - (e) Now construct an injection from the power set $P(\mathbb{R})$ of \mathbb{R} that is, the set of subsets of \mathbb{R} – into C and use this to argue that C has larger cardinality than \mathbb{R} . I believe both Exercise 1.5.11 and Theorem 1.6.2 were previously discussed in recitation, but feel free to ask questions about them on Tuesday if you have any.
- 7. In class we showed that there is an infinitely differentiable function

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & x > 0\\ 0 & x \le 0 \end{cases}$$

which is nonzero exactly on $(0, \infty)$. Show there exist infinitely differentiable functions with the following properties:* [Discussion continues on the next page.]

- (a) $f_a(x)$ which is nonzero exactly on (a, ∞) .
- (b) $q_b(x)$ which is nonzero exactly on $(-\infty, b)$.
- (c) $h_{a,b}(x)$ which is nonzero exactly on (a, b).
- (d) $j_{a,b}(x)$ such that $j_{a,b}(x) = 0$ for $x \ge a$ and $j_{a,b}(x) = 1$ for $x \ge b$.

Note that it follows immediately from the Algebraic Differentiability Theorem that the sum, difference, and (where it makes sense) quotient of infinitely differentiable functions is infinitely differentiable.