
Homework 11 Solutions

November 8, 2023

Section 4.4

Problem 4.4.2

(a) No, f(x) = 1
x is not uniformly continuous on (0, 1), either by the ϵ − δ argument given

in class, or by observing that there is a Cauchy sequence
(
1
n

)
in (0, 1) which is mapped to a

sequence
(
f
(
1
n

))
= (n) which is not Cauchy.

(b) Yes, g(x) =
√
1 + x2 is uniformly continuous on (0, 1). Note that it can be continuously

extended to a function g̃ on [0, 1], for example by taking g̃(x) =
√
1 + x2 on [0, 1].

(c) Yes, h(x) = x sin
(
1
x

)
is uniformly continuous on (0, 1). Note that it can be continuously

extended to a function h̃ on [0, 1], by taking h̃(1) = sin(1) and h̃(0) = 0.

Problem 4.4.5

Let g be defined on (a, c) such that g is uniformly continuous on (a, b] and on [b, c). Let ϵ > 0,
and pick δ1 such that if x, y ∈ (a, b] and |x−y| < δ1, then |g(x)−g(y)| < ϵ

2 , and likewise δ2 such
that if x, y ∈ [b, c) and |x− y| < δ2 then |g(x)− g(y)| < ϵ

2 . Then let x ≤ y be any two elements
of (a, c), and assume that |x− y| < δ = min{δ1, δ2}. If either x ≤ y ≤ b or b ≤ x ≤ y, it follows
immediately that |f(x)−f(y)| < ϵ

2 < ϵ. The interesting case is when x < b < y. In that case we
see that b− x < y − x < δ ≤ δ1, so since x, b ∈ (a, b], we have |f(x)− f(b)| < ϵ

2 . Likewise since
y − b < y − x < δ < δ2, so since y, b ∈ [b, c), we have that |f(b) − f(y)| < ϵ

2 . Ergo |x − y| < δ
and x, y ∈ (a, c) implies that |f(x)− f(y)| ≤ |f(x)− f(b)|+ |f(b)− f(y)| < ϵ

2 + ϵ
2 < ϵ.

Problem 4.4.6

(a) Possible. Let f : (0, 1) → R be f(x) = 1
x . Then let (xn) =

(
1
n

)
. This is a Cauchy sequence,

but (f(xn)) = (n) is not.

(b) Impossible; as proved in class, the image of a Cauchy sequence in a domain A under a
function f : A → R which is uniformly continuous is always a Cauchy sequence.

(c) Impossible. Suppose f : [0,∞) → R. Let (xn) be a Cauchy sequence in [0,∞). Then (xn)
is bounded, hence contained in some [0,M ]. But f is uniformly continuous on [0,M ] because
[0,M ] is compact, so (f(xn)) is a Cauchy sequence.
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Section 4.5

Problem 4.5.2

(a) Possible; let f : (0, 1) → R be given by

f(x) =


1
4 0 < x < 1

4

x 1
4 ≤ x ≤ 3

4
3
4

3
4 < x < 1

so that f((0, 1)) =
[
1
4 ,

3
4

]
.

(b) Impossible; a closed interval is compact, and the image of a compact set under a continuous
function is compact, hence in particular closed.

(c) Possible; consider f : (0,∞) → R given by f(x) = (x− 1)2, so that f((0,∞)) = [0,∞).

(d) Impossible; R is connected andQ is not, but the image of a connected set under a continuous
function is always connected.

Section 5.2

We set

fa(x) =

{
xa x > 0

0 x ≤ 0

(a) We claim that fa is continuous at 0 if a > 0. To see this note that fa(0) = 0, so fa is
continuous exactly when limx→0 fa(x) = 0. Now recall thatlimx→0 fa(x) = 0 is equivalent to the
left-hand and right-hand limits of the function at fa(x) existing and both equalling 0. Since it
is always the case that the left-hand limit limx→0− fa(x) = limx→0− 0 = 0, it suffices to check
that limx→0+ fa(x) is zero. To the right of zero, fa(x) = xa, and

lim
x→0+

xa =


0 a > 0

1 a = 0

∞ a < 0

We conclude that fa is continuous at 0 if a > 0.

(b) We claim that fa is differentiable at 0 if a > 1. For the derivative exists if

lim
x→0

fa(x)− fa(0)

x− 0
= lim

x→0

fa(x)

x

exists. Again, this limit exists if the left-hand and right-hand limits are equal, and limx→0−
fa(x)
x =

limx→0−
0
x = 0. Moreover we see that limx→0+

fa(x)
x = limx→0+ xa−1 which by the same logic as



in part (a) is equal to 0 exactly when a−1 > 0, or when a > 1. Then the full derivative function
is

f ′
a(x) =

{
axa−1 x > 0

0 x ≤ 0

which is continuous at 0 since a− 1 > 0.

(c) A close variation on the argument above shows that fa is twice-differentiable at 0 when
a > 2, and so on.

Other Problems

Problem 4

(a) Let f(x) = cosx − x. We observe that f is continuous on
[
0, π2

]
and f(0) = 1 whereas

f
(
π
2

)
= −π

2 . We conclude by the Intermediate Value Theorem that there is some x ∈
(
0, π2

)
with the property that f(x) = 0, or equivalently x = cosx.

(b) Let g(x) = xex − 2. We observe that f is continuous on [0, 1] and g(0) = −2 whereas
g(1) = e− 2 > 0. We conclude by the Intermediate Value Theorem that there is some x ∈ (0, 1)
with the property that g(x) = 0, or xex = 2.

Problem 5

Let p(x) = anx
n+ · · ·+a1x+a0 be a polynomial of odd degree. Note that p(x) is continuous on

R. Without loss of generality let an > 0, since we could multiply p(x) by −1 without changing
its roots. Choose y = max{|an−1|, . . . , |a0|} and x > max{1, nyan } so that

p(x) = anx
n + · · ·+ a1x+ a0

> anx
n − |an−1|xn−1 − · · · − |a1|x− |a0|

> ny(xn−1)− |an−1|xn−1 − · · · − |a1|xn−1 − |a0|xn−1

> nyxn−1 − nyxn−1

= 0

Similarly choose z < 0 so that p(z) < 0. Then there is some r ∈ (z, x) with the property that
p(r) = 0 by the Intermediate Value Theorem.



Problem 6

(a) We want to compute the derivative of f(x) = 3x+4
2x−1 at x = 1. We see that

f ′(1) = lim
x→1

f(x)− f(1)

x− 1

= lim
x→1

3x+4
2x−1 − 7

x− 1

= lim
x→1

−11x+ 11

x− 1

= lim
x→1

−11(x− 1)

x− 1

= lim
x→1

−11

= −11

(b) We want to compute the derivative of g(x) = x2 cosx at x = 0. We see that

g′(0) = lim
x→0

g(x)− g(0)

x− 0

= lim
x→0

x2 cosx− 0

x− 0

= lim
x→0

x2 cosx

x

= lim
x→0

x cosx

= 0

(c) We want to compute the derivative of h(x) = 1
x at any c ̸= 0. We see that

h′(c) = lim
x→c

h(x)− h(c)

x− c

= lim
x→c

1
x − 1

c

x− c

= lim
x→c

c−x
cx

x− c

= lim
x→c

−1

cx

= − 1

c2


