Homework 11 Solutions

November 8, 2023

Section 4.4

Problem 4.4.2

(a) No, $f(x)=\frac{1}{x}$ is not uniformly continuous on $(0,1)$, either by the $\epsilon-\delta$ argument given in class, or by observing that there is a Cauchy sequence $\left(\frac{1}{n}\right)$ in $(0,1)$ which is mapped to a sequence $\left(f\left(\frac{1}{n}\right)\right)=(n)$ which is not Cauchy.
(b) Yes, $g(x)=\sqrt{1+x^{2}}$ is uniformly continuous on $(0,1)$. Note that it can be continuously extended to a function \widetilde{g} on $[0,1]$, for example by taking $\widetilde{g}(x)=\sqrt{1+x^{2}}$ on $[0,1]$.
(c) Yes, $h(x)=x \sin \left(\frac{1}{x}\right)$ is uniformly continuous on $(0,1)$. Note that it can be continuously extended to a function \widetilde{h} on $[0,1]$, by taking $\widetilde{h}(1)=\sin (1)$ and $\widetilde{h}(0)=0$.

Problem 4.4.5

Let g be defined on (a, c) such that g is uniformly continuous on $(a, b]$ and on $[b, c)$. Let $\epsilon>0$, and pick δ_{1} such that if $x, y \in(a, b]$ and $|x-y|<\delta_{1}$, then $|g(x)-g(y)|<\frac{\epsilon}{2}$, and likewise δ_{2} such that if $x, y \in[b, c)$ and $|x-y|<\delta_{2}$ then $|g(x)-g(y)|<\frac{\epsilon}{2}$. Then let $x \leq y$ be any two elements of (a, c), and assume that $|x-y|<\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. If either $x \leq y \leq b$ or $b \leq x \leq y$, it follows immediately that $|f(x)-f(y)|<\frac{\epsilon}{2}<\epsilon$. The interesting case is when $x<b<y$. In that case we see that $b-x<y-x<\delta \leq \delta_{1}$, so since $x, b \in(a, b]$, we have $|f(x)-f(b)|<\frac{\epsilon}{2}$. Likewise since $y-b<y-x<\delta<\delta_{2}$, so since $y, b \in[b, c)$, we have that $|f(b)-f(y)|<\frac{\epsilon}{2}$. Ergo $|x-y|<\delta$ and $x, y \in(a, c)$ implies that $|f(x)-f(y)| \leq|f(x)-f(b)|+|f(b)-f(y)|<\frac{\epsilon}{2}+\frac{\epsilon}{2}<\epsilon$.

Problem 4.4.6

(a) Possible. Let $f:(0,1) \rightarrow \mathbb{R}$ be $f(x)=\frac{1}{x}$. Then let $\left(x_{n}\right)=\left(\frac{1}{n}\right)$. This is a Cauchy sequence, but $\left(f\left(x_{n}\right)\right)=(n)$ is not.
(b) Impossible; as proved in class, the image of a Cauchy sequence in a domain A under a function $f: A \rightarrow \mathbb{R}$ which is uniformly continuous is always a Cauchy sequence.
(c) Impossible. Suppose $f:[0, \infty) \rightarrow \mathbb{R}$. Let $\left(x_{n}\right)$ be a Cauchy sequence in $[0, \infty)$. Then $\left(x_{n}\right)$ is bounded, hence contained in some $[0, M]$. But f is uniformly continuous on $[0, M]$ because $[0, M]$ is compact, so $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence.

Section 4.5

Problem 4.5.2

(a) Possible; let $f:(0,1) \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}\frac{1}{4} & 0<x<\frac{1}{4} \\ x & \frac{1}{4} \leq x \leq \frac{3}{4} \\ \frac{3}{4} & \frac{3}{4}<x<1\end{cases}
$$

so that $f((0,1))=\left[\frac{1}{4}, \frac{3}{4}\right]$.
(b) Impossible; a closed interval is compact, and the image of a compact set under a continuous function is compact, hence in particular closed.
(c) Possible; consider $f:(0, \infty) \rightarrow \mathbb{R}$ given by $f(x)=(x-1)^{2}$, so that $f((0, \infty))=[0, \infty)$.
(d) Impossible; \mathbb{R} is connected and \mathbb{Q} is not, but the image of a connected set under a continuous function is always connected.

Section 5.2

We set

$$
f_{a}(x)= \begin{cases}x^{a} & x>0 \\ 0 & x \leq 0\end{cases}
$$

(a) We claim that f_{a} is continuous at 0 if $a>0$. To see this note that $f_{a}(0)=0$, so f_{a} is continuous exactly when $\lim _{x \rightarrow 0} f_{a}(x)=0$. Now recall that $\lim _{x \rightarrow 0} f_{a}(x)=0$ is equivalent to the left-hand and right-hand limits of the function at $f_{a}(x)$ existing and both equalling 0 . Since it is always the case that the left-hand limit $\lim _{x \rightarrow 0^{-}} f_{a}(x)=\lim _{x \rightarrow 0^{-}} 0=0$, it suffices to check that $\lim _{x \rightarrow 0^{+}} f_{a}(x)$ is zero. To the right of zero, $f_{a}(x)=x^{a}$, and

$$
\lim _{x \rightarrow 0^{+}} x^{a}= \begin{cases}0 & a>0 \\ 1 & a=0 \\ \infty & a<0\end{cases}
$$

We conclude that f_{a} is continuous at 0 if $a>0$.
(b) We claim that f_{a} is differentiable at 0 if $a>1$. For the derivative exists if

$$
\lim _{x \rightarrow 0} \frac{f_{a}(x)-f_{a}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f_{a}(x)}{x}
$$

exists. Again, this limit exists if the left-hand and right-hand limits are equal, and $\lim _{x \rightarrow 0^{-}} \frac{f_{a}(x)}{x}=$ $\lim _{x \rightarrow 0^{-}} \frac{0}{x}=0$. Moreover we see that $\lim _{x \rightarrow 0^{+}} \frac{f_{a}(x)}{x}=\lim _{x \rightarrow 0^{+}} x^{a-1}$ which by the same logic as
in part (a) is equal to 0 exactly when $a-1>0$, or when $a>1$. Then the full derivative function is

$$
f_{a}^{\prime}(x)= \begin{cases}a x^{a-1} & x>0 \\ 0 & x \leq 0\end{cases}
$$

which is continuous at 0 since $a-1>0$.
(c) A close variation on the argument above shows that f_{a} is twice-differentiable at 0 when $a>2$, and so on.

Other Problems

Problem 4

(a) Let $f(x)=\cos x-x$. We observe that f is continuous on $\left[0, \frac{\pi}{2}\right]$ and $f(0)=1$ whereas $f\left(\frac{\pi}{2}\right)=-\frac{\pi}{2}$. We conclude by the Intermediate Value Theorem that there is some $x \in\left(0, \frac{\pi}{2}\right)$ with the property that $f(x)=0$, or equivalently $x=\cos x$.
(b) Let $g(x)=x e^{x}-2$. We observe that f is continuous on $[0,1]$ and $g(0)=-2$ whereas $g(1)=e-2>0$. We conclude by the Intermediate Value Theorem that there is some $x \in(0,1)$ with the property that $g(x)=0$, or $x e^{x}=2$.

Problem 5

Let $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ be a polynomial of odd degree. Note that $p(x)$ is continuous on \mathbb{R}. Without loss of generality let $a_{n}>0$, since we could multiply $p(x)$ by -1 without changing its roots. Choose $y=\max \left\{\left|a_{n-1}\right|, \ldots,\left|a_{0}\right|\right\}$ and $x>\max \left\{1, \frac{n y}{a_{n}}\right\}$ so that

$$
\begin{aligned}
p(x) & =a_{n} x^{n}+\cdots+a_{1} x+a_{0} \\
& >a_{n} x^{n}-\left|a_{n-1}\right| x^{n-1}-\cdots-\left|a_{1}\right| x-\left|a_{0}\right| \\
& >n y\left(x^{n-1}\right)-\left|a_{n-1}\right| x^{n-1}-\cdots-\left|a_{1}\right| x^{n-1}-\left|a_{0}\right| x^{n-1} \\
& >n y x^{n-1}-n y x^{n-1} \\
& =0
\end{aligned}
$$

Similarly choose $z<0$ so that $p(z)<0$. Then there is some $r \in(z, x)$ with the property that $p(r)=0$ by the Intermediate Value Theorem.

Problem 6

(a) We want to compute the derivative of $f(x)=\frac{3 x+4}{2 x-1}$ at $x=1$. We see that

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\frac{3 x+4}{2 x-1}-7}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{-11 x+11}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{-11(x-1)}{x-1} \\
& =\lim _{x \rightarrow 1}-11 \\
& =-11
\end{aligned}
$$

(b) We want to compute the derivative of $g(x)=x^{2} \cos x$ at $x=0$. We see that

$$
\begin{aligned}
g^{\prime}(0) & =\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0} \\
& =\lim _{x \rightarrow 0} \frac{x^{2} \cos x-0}{x-0} \\
& =\lim _{x \rightarrow 0} \frac{x^{2} \cos x}{x} \\
& =\lim _{x \rightarrow 0} x \cos x \\
& =0
\end{aligned}
$$

(c) We want to compute the derivative of $h(x)=\frac{1}{x}$ at any $c \neq 0$. We see that

$$
\begin{aligned}
h^{\prime}(c) & =\lim _{x \rightarrow c} \frac{h(x)-h(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{\frac{1}{x}-\frac{1}{c}}{x-c} \\
& =\lim _{x \rightarrow c} \frac{\frac{c-x}{c x}}{x-c} \\
& =\lim _{x \rightarrow c} \frac{-1}{c x} \\
& =-\frac{1}{c^{2}}
\end{aligned}
$$

