
Homework 10 Solutions

November 5, 2023

Section 4.2

Problem 4.2.5

(c) We wish to show that limx→2(x
2 + x − 1) = 5. Let ϵ > 0, and set δ = min{1, ϵ

6}. Assume
0 < |x− 2| < δ. We begin by noting that since δ < 1, we have 1 < x < 3. We then compute:

|(x2 + x− 1)− 5| = |x2 + x− 6|
= |x+ 3||x− 2|
< 6|x− 2|

< 6 · ϵ
6

= ϵ.

As ϵ was arbitrary we are done.

(d) We wish to show that limx→0
1
x = 1

3 . Let ϵ > 0, and let δ = min{1, 6ϵ} .Assume 0 < |x−3| <
δ. We begin by noting that since δ < 1, 2 < x < 4. We then compute:∣∣∣∣1x − 1

3

∣∣∣∣ = ∣∣∣∣x− 3

3x

∣∣∣∣
=

|x− 3|
3x

<
|x− 3|

6

<
6ϵ

6
= ϵ.

As ϵ was arbitrary we are done.

Problem 4.2.8

(a) Let f(x) = |x−2|
x−2 . Consider the sequence xn = 2 − 1

n , so that xn → 2. We see that

f(xn) =
|xn−2|
xn−2 = −1 for all n, so f(xn) → −1. But if we instead consider yn = 2 + 1

n , we have

that yn → 2 but f(yn) = 1 for all n so f(yn) → 1. Therefore the limit limx→2
|x−2|
x−2 does not

exist.
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(b) We now consider limx→ 7
4

|x−2|
x−2 . Let ϵ > 0. Let δ = 1

4 . Then, in particular, if 0 < |x− 7
4 | < δ,

we have that x < 2, so that f(x) = −1. In particular, if 0 < |x− 7
4 | < δ then |f(x)−(−1)| = 0 < ϵ.

Ergo, limx→ 7
4

|x−2|
x−2 = −1.

(c) Let f(x) = (−1)[[
1
x
]]. Consider the sequence

(
1
n

)
converging to 0. We see that f

(
1
n

)
=

(−1)n. This does not converge. So limx→0 f(x) does not exist.

(d) Let f(x) = x
1
3 · (−1)[[

1
x
]]. Then given ϵ > 0, let δ = ϵ3. Then if 0 < |x| < δ, we have that

|f(x)− 0| = |f(x)| = |x|
1
3 < ϵ. Hence limx→0 f(x) = 0.

Problem 4.2.10

(a) Let f : A → R be a function, and let c be a limit point of A ∩ {x : x < a}. Then we say
that limx→a− f(x) = M if for any ϵ > 0, it is the case that a− δ < x < a and x ∈ A implies that
|f(x)−M | < ϵ. Similarly if a is a limit point of A ∩ {x : x > a}, we say that limx→a+ f(x) = L
if for any ϵ > 0, it is the case that a < x < a+ δ and x ∈ A implies that |f(x)− L| < ϵ.

(b) Assume that f : A → R is a function, and a is a limit point of both A ∩ {x : x < a} and
A ∩ {x : x > a}. (If it isn’t, this question doesn’t actually quite make sense.)
First assume limx→a f(x) = L. Then for any ϵ > 0, there is a δ > 0 such that 0 < |x − a| < δ
and x ∈ A implies that |f(x)− L| < ϵ. In particular this means that a− δ < x < a and x ∈ A
implies |f(x) − L| < ϵ, so limx→a− f(x) = L. Similarly it also means that a < x < a + δ and
x ∈ A implies |f(x)− L| < ϵ, so limx→a+ f(x) = L
In the other direction, assume that limx→a− f(x) = L and limx→a+ f(x) = L. Let ϵ > 0. Then
there is a δ1 > 0 such that a− δ1 < x < a and x ∈ A implies that |f(x)−L| < ϵ. Likewise there
is a δ2 such that a < x < a+ δ2 and x ∈ A implies that |f(x)−L| < ϵ. Let δ = min{δ1, δ2, then
0 < |x− a| < δ and x ∈ A implies that |f(x)− L| < ϵ. So limx→a f(x) = L.
Remark: The second implication depends, very heavily, on there being a finite number of di-
rections (two) from which we can approach a. It’s not true for limits on the plane R2, for
example.

Section 4.3

Problem 4.3.1

(a) Let g(x) = x
1
3 . Given ϵ > 0, let δ = ϵ3. Then if |x| = |x − 0| < δ, we have that

|x
1
3 − 0| = |x|

1
3 < ϵ. Ergo g is continuous at 0.



(b) Let c ̸= 0. Given ϵ > 0, let δ < min{c
2
3 ϵ, |c|}, so that in particular if |x − c| < δ x and c

have the same sign. Then if |x− c| < δ, we have that

|x
1
3 − c

1
3 | = |x

1
3 − c

1
3 | · |x

2
3 + c

1
3x

1
3 + c

2
3 |

|x
2
3 + c

1
3x

1
3 + c

2
3 |

=
|x− c|

|x
2
3 + c

1
3x

1
3 + c

2
3 |

=
|x− c|

x
2
3 + c

1
3x

1
3 + c

2
3

<
|x− c|
c
2
3

<
c
2
3 ϵ

c
2
3

= ϵ.

Problem 4.3.4

(a) Let f(x) ≡ 1, and let

g(x) =

{
2 x ̸= 1

0 x = 1

such that limx→0 f(x) = 1 and limx→1 g(x) = 2, but limx→0 g(f(x)) = 0.

(b) If we assume that f and g are continuous on R, then we have limx→p f(x) = f(p) and
limx→f(p) g(x) = g(f(p)), and from the fact that the composition of continuous functions is
continuous we see that limx→p g(f(x)) = g(f(p)), so the relationship between the limits is true.

(c) We can get the result of (a) even if the function f is continuous; consider the example
above. But not suppose that g is continuous (in particular, continuous at q) and we have
limx→p f(x) = q and limx→q g(x) = r = g(q). Then if xn is a sequence of points with xn ̸= p
and xn → p, we have that f(xn) → q, so since g is continuous at q, we see that g(f(xn)) → g(q).
As (xn) was arbitrary we observe that limx→p g(f(x)) = g(q) = r.

Problem 4.3.6

For the statements below, we assume that f and g have the same domain and 0 is a limit point
of the domain.

(a) Let

f(x) =

{
0 x ≤ 0

1 x > 0

and

g(x) =

{
1 x ≤ 0

0 x > 0

so that neither f nor g is continuous at 0 but fg(x) ≡ 0 and f + g(x) ≡ 1 both are.



(b) Impossible. Suppose we have the situation that f(x) and f(x) + g(x) are continuous at
0. Then let (xn) be any sequence of points converging to 0 in the mutual domain of the three
functions. We have that g(xn) = (f(xn) + g(xn)) − f(xn) → (f(0) + g(0)) − f(0) = g(0) using
continuity of f and f + g at 0 and the Algebraic Limit Theorem. But since (xn) was arbitrary,
g is in fact continuous at 0.

(c) Let f(x) ≡ 0 be the zero function, and g(x) be any function not continuous at 0.

(d) Let

f(x) =

{
2 x ≤ 0
1
2 x > 0

so that g(x) = f(x) + 1
f(x) ≡

3
2 for all x.

(e) Impossible. If h(x) = [f(x)]3 is continuous at 0, recall from Problem 4.3.1 that g(x) = x
1
3 is

continuous on R, and therefore in particular at [f(0)]3. The composition of continuous functions
is continuous, so f(x) = g(h(x)) is continuous at 0.

Section 4.4

Problem 4.4.8

(a) Impossible; the image of a compact set under a continuous function is compact.

(b) Possible; let

f(x) =


0 0 < x < 1

4

4x− 1 1
4 < x < 1

2

1 1
2 < x

(c) Let

g(x) =

∣∣sin ( 1
x

)∣∣+ x

1 + 2x

on [0, 1). We observe that because all four terms in the expression are positive, this is always a
positive number; moreover, since

∣∣sin ( 1
x

)∣∣ + x ≤ 1 + x < 1 + 2x, we see that g(x) < 1. Since
the image of an interval is an interval, to show that g((0, 1]) is (0, 1) it suffices to check that we
can find an x such that g(x) < ϵ for all ϵ > 0 and a y such that g(y) > 1 − ϵ or equivalently
1− g(y) < ϵ likewise for all ϵ > 0.

So, let ϵ > 0. Then pick x = 1
2πn < ϵ. We have g(x) = 0+x

1+2x < x < ϵ. Similarly if we pick y

such that y = 1
2πn+π

2
< ϵ, we have that 1−g(y) = 1− 1+y

1+2y = y
1+2y < y < ϵ. So g((0, 1]) = (0, 1).

Problem 4.4.12

(a) False. Let f : R → R be the constant function f(x) = 0 for all x ∈ R. Certainly f is
continuous on R. Then {0} is finite but f−1({0}) = R is not.



(b) False, by the same example as (a); {0} is compact but R is not.

(c) False, again by the same example.


