Homework 10 Solutions

November 5, 2023

Section 4.2

Problem 4.2.5

(c) We wish to show that $\lim _{x \rightarrow 2}\left(x^{2}+x-1\right)=5$. Let $\epsilon>0$, and set $\delta=\min \left\{1, \frac{\epsilon}{6}\right\}$. Assume $0<|x-2|<\delta$. We begin by noting that since $\delta<1$, we have $1<x<3$. We then compute:

$$
\begin{aligned}
\left|\left(x^{2}+x-1\right)-5\right| & =\left|x^{2}+x-6\right| \\
& =|x+3||x-2| \\
& <6|x-2| \\
& <6 \cdot \frac{\epsilon}{6} \\
& =\epsilon .
\end{aligned}
$$

As ϵ was arbitrary we are done.
(d) We wish to show that $\lim _{x \rightarrow 0} \frac{1}{x}=\frac{1}{3}$. Let $\epsilon>0$, and let $\delta=\min \left\{1, \frac{6 \epsilon}{\}}\right.$. Assume $0<|x-3|<$ δ. We begin by noting that since $\delta<1,2<x<4$. We then compute:

$$
\begin{aligned}
\left|\frac{1}{x}-\frac{1}{3}\right| & =\left|\frac{x-3}{3 x}\right| \\
& =\frac{|x-3|}{3 x} \\
& <\frac{|x-3|}{6} \\
& <\frac{6 \epsilon}{6} \\
& =\epsilon .
\end{aligned}
$$

As ϵ was arbitrary we are done.

Problem 4.2.8

(a) Let $f(x)=\frac{|x-2|}{x-2}$. Consider the sequence $x_{n}=2-\frac{1}{n}$, so that $x_{n} \rightarrow 2$. We see that $f\left(x_{n}\right)=\frac{\left|x_{n}-2\right|}{x_{n}-2}=-1$ for all n, so $f\left(x_{n}\right) \rightarrow-1$. But if we instead consider $y_{n}=2+\frac{1}{n}$, we have that $y_{n} \rightarrow 2$ but $f\left(y_{n}\right)=1$ for all n so $f\left(y_{n}\right) \rightarrow 1$. Therefore the limit $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$ does not exist.
(b) We now consider $\lim _{x \rightarrow \frac{7}{4}} \frac{|x-2|}{x-2}$. Let $\epsilon>0$. Let $\delta=\frac{1}{4}$. Then, in particular, if $0<\left|x-\frac{7}{4}\right|<\delta$, we have that $x<2$, so that $f(x)=-1$. In particular, if $0<\left|x-\frac{7}{4}\right|<\delta$ then $|f(x)-(-1)|=0<\epsilon$. Ergo, $\lim _{x \rightarrow \frac{7}{4}} \frac{|x-2|}{x-2}=-1$.
(c) Let $f(x)=(-1)^{\left[\left[\frac{1}{x}\right]\right]}$. Consider the sequence $\left(\frac{1}{n}\right)$ converging to 0 . We see that $f\left(\frac{1}{n}\right)=$ $(-1)^{n}$. This does not converge. So $\lim _{x \rightarrow 0} f(x)$ does not exist.
(d) Let $f(x)=x^{\frac{1}{3}} \cdot(-1)^{\left[\left[\frac{1}{x}\right]\right]}$. Then given $\epsilon>0$, let $\delta=\epsilon^{3}$. Then if $0<|x|<\delta$, we have that $|f(x)-0|=|f(x)|=|x|^{\frac{1}{3}}<\epsilon$. Hence $\lim _{x \rightarrow 0} f(x)=0$.

Problem 4.2.10

(a) Let $f: A \rightarrow \mathbb{R}$ be a function, and let c be a limit point of $A \cap\{x: x<a\}$. Then we say that $\lim _{x \rightarrow a^{-}} f(x)=M$ if for any $\epsilon>0$, it is the case that $a-\delta<x<a$ and $x \in A$ implies that $|f(x)-M|<\epsilon$. Similarly if a is a limit point of $A \cap\{x: x>a\}$, we say that $\lim _{x \rightarrow a^{+}} f(x)=L$ if for any $\epsilon>0$, it is the case that $a<x<a+\delta$ and $x \in A$ implies that $|f(x)-L|<\epsilon$.
(b) Assume that $f: A \rightarrow \mathbb{R}$ is a function, and a is a limit point of both $A \cap\{x: x<a\}$ and $A \cap\{x: x>a\}$. (If it isn't, this question doesn't actually quite make sense.)
First assume $\lim _{x \rightarrow a} f(x)=L$. Then for any $\epsilon>0$, there is a $\delta>0$ such that $0<|x-a|<\delta$ and $x \in A$ implies that $|f(x)-L|<\epsilon$. In particular this means that $a-\delta<x<a$ and $x \in A$ implies $|f(x)-L|<\epsilon$, so $\lim _{x \rightarrow a^{-}} f(x)=L$. Similarly it also means that $a<x<a+\delta$ and $x \in A$ implies $|f(x)-L|<\epsilon$, so $\lim _{x \rightarrow a^{+}} f(x)=L$
In the other direction, assume that $\lim _{x \rightarrow a^{-}} f(x)=L$ and $\lim _{x \rightarrow a^{+}} f(x)=L$. Let $\epsilon>0$. Then there is a $\delta_{1}>0$ such that $a-\delta_{1}<x<a$ and $x \in A$ implies that $|f(x)-L|<\epsilon$. Likewise there is a δ_{2} such that $a<x<a+\delta_{2}$ and $x \in A$ implies that $|f(x)-L|<\epsilon$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right.$, then $0<|x-a|<\delta$ and $x \in A$ implies that $|f(x)-L|<\epsilon$. So $\lim _{x \rightarrow a} f(x)=L$.
Remark: The second implication depends, very heavily, on there being a finite number of directions (two) from which we can approach a. It's not true for limits on the plane \mathbb{R}^{2}, for example.

Section 4.3

Problem 4.3.1

(a) Let $g(x)=x^{\frac{1}{3}}$. Given $\epsilon>0$, let $\delta=\epsilon^{3}$. Then if $|x|=|x-0|<\delta$, we have that $\left|x^{\frac{1}{3}}-0\right|=|x|^{\frac{1}{3}}<\epsilon$. Ergo g is continuous at 0 .
(b) Let $c \neq 0$. Given $\epsilon>0$, let $\delta<\min \left\{c^{\frac{2}{3}} \epsilon,|c|\right\}$, so that in particular if $|x-c|<\delta x$ and c have the same sign. Then if $|x-c|<\delta$, we have that

$$
\begin{aligned}
\left|x^{\frac{1}{3}}-c^{\frac{1}{3}}\right| & =\left|x^{\frac{1}{3}}-c^{\frac{1}{3}}\right| \cdot \frac{\left|x^{\frac{2}{3}}+c^{\frac{1}{3}} x^{\frac{1}{3}}+c^{\frac{2}{3}}\right|}{\left|x^{\frac{2}{3}}+c^{\frac{1}{3}} x^{\frac{1}{3}}+c^{\frac{2}{3}}\right|} \\
& =\frac{|x-c|}{\left|x^{\frac{2}{3}}+c^{\frac{1}{3}} x^{\frac{1}{3}}+c^{\frac{2}{3}}\right|} \\
& =\frac{|x-c|}{x^{\frac{2}{3}}+c^{\frac{1}{3}} x^{\frac{1}{3}}+c^{\frac{2}{3}}} \\
& <\frac{|x-c|}{c^{\frac{2}{3}}} \\
& <\frac{c^{\frac{2}{3}} \epsilon}{c^{\frac{2}{3}}} \\
& =\epsilon .
\end{aligned}
$$

Problem 4.3.4

(a) Let $f(x) \equiv 1$, and let

$$
g(x)= \begin{cases}2 & x \neq 1 \\ 0 & x=1\end{cases}
$$

such that $\lim _{x \rightarrow 0} f(x)=1$ and $\lim _{x \rightarrow 1} g(x)=2$, but $\lim _{x \rightarrow 0} g(f(x))=0$.
(b) If we assume that f and g are continuous on \mathbb{R}, then we have $\lim _{x \rightarrow p} f(x)=f(p)$ and $\lim _{x \rightarrow f(p)} g(x)=g(f(p))$, and from the fact that the composition of continuous functions is continuous we see that $\lim _{x \rightarrow p} g(f(x))=g(f(p))$, so the relationship between the limits is true.
(c) We can get the result of (a) even if the function f is continuous; consider the example above. But not suppose that g is continuous (in particular, continuous at q) and we have $\lim _{x \rightarrow p} f(x)=q$ and $\lim _{x \rightarrow q} g(x)=r=g(q)$. Then if x_{n} is a sequence of points with $x_{n} \neq p$ and $x_{n} \rightarrow p$, we have that $f\left(x_{n}\right) \rightarrow q$, so since g is continuous at q, we see that $g\left(f\left(x_{n}\right)\right) \rightarrow g(q)$. As $\left(x_{n}\right)$ was arbitrary we observe that $\lim _{x \rightarrow p} g(f(x))=g(q)=r$.

Problem 4.3.6

For the statements below, we assume that f and g have the same domain and 0 is a limit point of the domain.
(a) Let

$$
f(x)= \begin{cases}0 & x \leq 0 \\ 1 & x>0\end{cases}
$$

and

$$
g(x)= \begin{cases}1 & x \leq 0 \\ 0 & x>0\end{cases}
$$

so that neither f nor g is continuous at 0 but $f g(x) \equiv 0$ and $f+g(x) \equiv 1$ both are.
(b) Impossible. Suppose we have the situation that $f(x)$ and $f(x)+g(x)$ are continuous at 0 . Then let $\left(x_{n}\right)$ be any sequence of points converging to 0 in the mutual domain of the three functions. We have that $g\left(x_{n}\right)=\left(f\left(x_{n}\right)+g\left(x_{n}\right)\right)-f\left(x_{n}\right) \rightarrow(f(0)+g(0))-f(0)=g(0)$ using continuity of f and $f+g$ at 0 and the Algebraic Limit Theorem. But since $\left(x_{n}\right)$ was arbitrary, g is in fact continuous at 0 .
(c) Let $f(x) \equiv 0$ be the zero function, and $g(x)$ be any function not continuous at 0 .
(d) Let

$$
f(x)= \begin{cases}2 & x \leq 0 \\ \frac{1}{2} & x>0\end{cases}
$$

so that $g(x)=f(x)+\frac{1}{f(x)} \equiv \frac{3}{2}$ for all x.
(e) Impossible. If $h(x)=[f(x)]^{3}$ is continuous at 0 , recall from Problem 4.3.1 that $g(x)=x^{\frac{1}{3}}$ is continuous on \mathbb{R}, and therefore in particular at $[f(0)]^{3}$. The composition of continuous functions is continuous, so $f(x)=g(h(x))$ is continuous at 0 .

Section 4.4

Problem 4.4.8

(a) Impossible; the image of a compact set under a continuous function is compact.
(b) Possible; let

$$
f(x)= \begin{cases}0 & 0<x<\frac{1}{4} \\ 4 x-1 & \frac{1}{4}<x<\frac{1}{2} \\ 1 & \frac{1}{2}<x\end{cases}
$$

(c) Let

$$
g(x)=\frac{\left|\sin \left(\frac{1}{x}\right)\right|+x}{1+2 x}
$$

on $[0,1)$. We observe that because all four terms in the expression are positive, this is always a positive number; moreover, since $\left|\sin \left(\frac{1}{x}\right)\right|+x \leq 1+x<1+2 x$, we see that $g(x)<1$. Since the image of an interval is an interval, to show that $g((0,1])$ is $(0,1)$ it suffices to check that we can find an x such that $g(x)<\epsilon$ for all $\epsilon>0$ and a y such that $g(y)>1-\epsilon$ or equivalently $1-g(y)<\epsilon$ likewise for all $\epsilon>0$.

So, let $\epsilon>0$. Then pick $x=\frac{1}{2 \pi n}<\epsilon$. We have $g(x)=\frac{0+x}{1+2 x}<x<\epsilon$. Similarly if we pick y such that $y=\frac{1}{2 \pi n+\frac{\pi}{2}}<\epsilon$, we have that $1-g(y)=1-\frac{1+y}{1+2 y}=\frac{y}{1+2 y}<y<\epsilon$. So $g((0,1])=(0,1)$.

Problem 4.4.12

(a) False. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the constant function $f(x)=0$ for all $x \in \mathbb{R}$. Certainly f is continuous on \mathbb{R}. Then $\{0\}$ is finite but $f^{-1}(\{0\})=\mathbb{R}$ is not.
(b) False, by the same example as (a); $\{0\}$ is compact but \mathbb{R} is not.
(c) False, again by the same example.

