Math 311H Honors Introduction to Real Analysis

Final

Instructions: You have three hours to complete the exam. There are nine questions, worth a total of forty-five points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name: _____

Question	Points	Score
1	4	
2	5	
3	5	
4	4	
5	5	
6	5	
7	5	
8	6	
9	6	
Total:	45	

- 1. For each of the following things, either give an example of the described object (no need to justify it) or write a sentence saying why this is impossible.
 - (a) [1pts.] A subset $E \subset \mathbb{R}$ whose limit points are exactly the rational numbers \mathbb{Q} .

Solution: Impossible. Let L be the set of limit points of E. Recall that any limit point of L is also a limit point of E. But the set of limit points of \mathbb{Q} is all of \mathbb{R} , so any set whose limit points include all the rationals in fact has a limit point at every real number.

(b) [1pts.] A power series that converges uniformly on its interval of convergence.

Solution: An example is $\sum_{n=1} \frac{x^n}{n^2}$, which converges uniformly on [-1, 1].

(c) [1pts.] A point $x \in (0, \frac{\pi}{2})$ such that $x \ge \tan x$.

Solution: This is not possible. Let $f(x) = \tan x - x$. Observe that f(0) = 0 and $f'(x) = \sec^2(x) - 1$, which is positive on $[0, \frac{\pi}{2})$. Hence f is increasing on this interval, so that $f(x) \ge 0$ on $(0, \frac{\pi}{2})$, or equivalently $\tan x \ge x$.

(d) [1pts.] A nonempty connected set which contains no nonempty compact subset.

Solution: This is not possible; every nonempty set contains a compact subset because one-element sets are compact.

2. [5pts.] Let (f_n) be a sequence of functions on an interval (a, b) such that each f_n is uniformly continuous on (a, b). Suppose that $f_n \to f$ uniformly on (a, b). Prove or disprove: f is also uniformly continuous on (a, b).

Solution: The statement is true. Let $\epsilon > 0$. Pick N such that $n \ge N$ implies that $|f_n(x) - f(x)| < \frac{\epsilon}{3}$ for all $x \in (a, b)$. Furthermore, choose δ such that $|x - y| < \delta$ implies that $|f_N(x) - f_N(y)| < \frac{\epsilon}{3}$. Then we see that for $|x - y| < \delta$ and $x, y \in (a, b)$, we have

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Ergo f is uniformly continuous on (a, b).

3. (a) [3pts.] Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with the property that infinitely many a_n are integers. Prove that the series must have radius of convergence $R \leq 1$.

Solution: Suppose R > 1. Then $\sum_{n=0}^{\infty} a_n(1)^n$ converges absolutely. In particular $\sum_{n=0}^{\infty} |a_n|$ converges, so $|a_n| \to 0$, so there is some N such that $n \ge N$ implies that $|a_n| < 1$. This shows that only finitely many a_n can be integers. We conclude that if infinitely many a_n are integers, $R \le 1$.

(b) [2pts.] Give an example of a power series of the form above with R = 1.

Solution: The geometric series $\sum_{n=0}^{n} x^n$ is a fine example.

4. [4pts.] A function $f : \mathbb{R} \to \mathbb{R}$ is said to have a fixed point if f(x) = x. Prove that if f is differentiable on A with $f'(x) \neq 1$ for all x, then f has at most one fixed point on A.

Solution: Since f is differentiable on A, we have that f is also continuous on A. Suppose that f has two fixed points x < y in A, and apply the Mean Value Theorem to [x, y]. Then there is some $c \in (x, y)$ such that

$$f'(c) = \frac{f(y) - f(x)}{y - x} = \frac{y - x}{y - x} = 1$$

which contradicts the assumption that $f' \neq 1$ on A. So f has at most one fixed point.

5. (a) [3pts.] Compute $\sum_{n=2}^{\infty} \frac{n^2}{3^n}$.

Solution: We recall that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ on (-1, 1). Power series are differentiable term-by-term so we have

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1} = 1 + 2x + 3x^2 + \dots$$

and therefore

$$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots$$

all on (-1, 1). Differentiating again, we see that on (-1, 1), we have

$$\frac{1(1-x)^2 - x(-2)(1-x)}{(1-x)^4} = \frac{1-x^2}{(1-x)^4} = 1 + 4x + 9x^2 + \dots$$

We multiply by x to see that on (-1, 1), we have

$$\frac{x(1-x^2)}{(1-x)^4} = x + 4x^2 + 9x^3 + \dots = \sum_{n=1}^{\infty} n^2 x^n.$$

We see that

$$\sum_{n=2}^{\infty} \frac{n^2}{3^n} = \frac{(1/3)(1 - (1/3)^2)}{(1 - (1/3))^4} - \frac{1}{3}$$
$$= \frac{3}{2} - \frac{1}{3}$$
$$= \frac{7}{6}$$

(b) [2pts.] Estimate $\frac{1}{e}$ to within $\frac{1}{100}$.

Solution: Using the Taylor series expansion of e^x we have that

$$\frac{1}{e} = e^{-1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = 1 - 1 + \frac{1}{2} - \frac{1}{6} + \dots$$

As this is alternating the error on any given partial sum is bounded by the absolute value of the next term of the sequence. We have $\frac{1}{5!} = \frac{1}{120} < \frac{1}{100}$, so our estimation is

$$e^{-1} \sim 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} = \frac{3}{8}$$

- 6. Consider the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$.
 - (a) [2pts.] At what points does the series converge? Is the convergence conditional or absolute?

Solution: We observe that the absolute values of the terms of the sequence are $|a_n| = \frac{x^2+n}{n^2} = \frac{x^2}{n^2} + \frac{1}{n}$. These are decreasing to zero for any given $x \in \mathbb{R}$, and the series is alternating, so it converges everywhere. However, $|a_n| > \frac{1}{n}$, so the series does not converge absolutely at any point, only conditionally.

(b) [3pts.] Prove that the series converges uniformly on every bounded interval. [Hint: Consider derivatives.]

Solution: We differentiate term-by-term to obtain the series $\sum_{n=1}^{\infty} (-1)^n \frac{2x}{n^2}$. Let us restrict to a bounded interval (a, b). Since

$$\left| (-1)^n \frac{2x}{n^2} \right| = (2x) \frac{1}{n^2} < 2 \max\{|a|, |b|\} \frac{1}{n^2} = M_n$$

and $\sum_{n=1}^{\infty} M_n$ converges, by the Weierstrass *M*-test we see that $\sum_{n=1}^{\infty} (-1)^n \frac{2x}{n^2}$ converges uniformly on every bounded interval. By the Differentiable Limit

Theorem, since the original series $\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$ converges at at least one point in every bounded interval, it also converges uniformly.

Note that attempting to use the Weierstrass M-Test on the original series does not work, as it only detects uniform convergence of series which are pointwise absolutely convergent.

- 7. Compute the derivative functions of the following functions, where they exist.
 - (a) [3pts.] $g(x) = xe^{|x|}$

Solution:

We may rewrite this function as

$$g(x) = \begin{cases} xe^{-x} & x < 0\\ xe^{x} & x > 0 \end{cases}$$

The interesting case is when x = 0. We see that the lefthand limit is $\lim_{x\to 0^-} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0^-} \frac{xe^{-x}}{x} = \lim_{x\to 0^-} e^{-x} = 1$ whereas the righthand limit is $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0^+} \frac{xe^x}{x} = \lim_{x\to 0^+} 1$. We conclude that

$$g'(x) = \begin{cases} e^{-x} - xe^{-x} & x < 0\\ 1 & x = 0\\ e^x + xe^x & x > 0 \end{cases}$$

which we may repackage as $g'(x) = (1 + |x|)e^{|x|}$.

(b) [2pts.]

$$f(x) = \begin{cases} x \sin x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

Solution: Let c be any real number. Recall that there is a sequence of rational numbers (x_n) such that $x_n \to c$ and a sequence of irrational numbers (y_n) such that $y_n \to c$. We observe that $f(x_n) = x_n \sin(x_n) \to c \sin c$ and $f(y_n) = 0 \to 0$, so f is discontinuous for any c such that $c \sin(c) \neq 0$. Since differentiability implies continuity we need only investigate points where $c \sin c = 0$, or where $c = n\pi$ for some integer n.

For $c = n\pi$, the derivative at c if it is exists is $\lim_{x\to c} \frac{f(x)-c\sin(c)}{x-c}$. If $n \neq 0$, if we approach along the sequence (x_n) this quotient is $\frac{x_n \sin(x_n) - c \sin(c)}{x - c} = \sin(c) + c \cos(c) = c \text{ and if we approach along the sequence}$ $(y_n) \text{ this quotient is } \frac{0 - 0}{x - c} = 0 \to 0. \text{ So, } f \text{ is not differentiable at } c = n\pi \text{ for } n \neq 0.$ However, at c = 0, the derivative is $\lim_{x \to 0} \frac{f(x)}{x}$ if it exists, and $0 \leq \left| \frac{f(x)}{x} \right| \leq |\sin x|$, so by the Squeeze Theorem for Functional Limits we conclude that f'(0) = 0.

- 8. Compute the following limits.
 - (a) [2pts.] $\lim_{x\to 0} \frac{\sqrt{1+x} \sqrt{1-x}}{x}$

Solution: We multiply both the numerator and denominator by $\sqrt{1+x} + \sqrt{1-x}$, obtaining

$$\lim_{x \to 0} \frac{(1+x) - (1-x)}{x(\sqrt{1+x} + \sqrt{1-x})} = \lim_{x \to 0} \frac{2x}{x(\sqrt{1+x} + \sqrt{1-x})}$$
$$= \lim_{x \to 0} \frac{2}{(\sqrt{1+x} + \sqrt{1-x})}$$
$$= \frac{2}{2}$$
$$= 1$$

(b) [2pts.] $\lim_{x\to 0^+} x^x$

Solution: We replace the limit with

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{\ln(x^x)}$$
$$= \lim_{x \to 0^+} e^{x \ln(x)}$$

We observe that the term in the exponent has

$$\lim_{x \to 0^+} x \ln(x) = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} \\
= \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} \\
= \lim_{x \to 0^+} -x \\
= 0$$

where the second equality is by L'Hospital's Rule since the limit on the right exists. So since e^x is a continuous function, the original limit is $e^0 = 1$.

(c) [2pts.] $\lim_{x\to 0} \frac{1-\cos x}{e^{x}-1}$

Solution: We observe that the numerator and denominator evaluate to 0 at 0, so the limit is equal to

$$\lim_{x \to 0} \frac{\sin x}{e^x} = \frac{0}{1} = 0$$

by L'Hospital's Rule since the latter exists.

- 9. A sequence of functions $f_n \colon A \to \mathbb{R}$ is said to be *equicontinuous* if for every $\epsilon > 0$ there is a $\delta > 0$ such that $|x y| < \delta$ implies that $|f_n(x) f_n(y)| < \epsilon$ for all $x, y \in A$ and all n.
 - (a) [2pts.] Give an example of a pointwise convergent sequence of functions $f_n \colon A \to \mathbb{R}$ such that each f_n is uniformly continuous on A but (f_n) is not equicontinuous on A.

Solution: Consider the sequence

$$f_n(x) = \begin{cases} n^2 x & 0 \le x \le \frac{1}{n} \\ 2n - n^2 x & \frac{1}{n} < x \le \frac{2}{n} \\ 0 & \frac{2}{n} < x \le 1 \end{cases}$$

Each of these functions is continuous on [0, 1], hence uniformly continuous. But given $\epsilon = 1$ and any $\delta > 0$ we may choose N such that $\frac{1}{N} < \delta$. Then $\left| 0 - \frac{1}{N} \right| < \delta$ but $|f_N(0) - f_N\left(\frac{1}{N}\right)| = |0 - N| = N > 1$. So (f_n) is not equicontinuous.

(b) [2pts.] Let (f_n) with $f_n: [0,1] \to \mathbb{R}$ be equicontinuous and uniformly bounded; that is, there exists M with the property that $|f_n(x)| \leq M$ for all $x \in [0,1]$ and all n. Prove (f_n) has a subsequence which converges pointwise at every rational number. [Hint: By Bolzano-Weierstrass, there is certainly a subsequence of $(f_n(1))$ which converges. How could you modify this to converge at a second rational?]

Solution: Consider any enumeration of the rational numbers $\{r_1, r_2, ...\}$. The sequence $(f_n(r_1))$ is bounded, hence has a convergent subsequence $(f_{n_{1,k}}(r_1))$. Now, if we consider the sequence of functions $(f_{n_{1,k}})$ and apply them to r_2 we see there is a subsequence of $(f_{n_{1,k}}(r_2))$ which converges, call it $(f_{n_{2,k}}(r_2))$. Indeed, we may insist that $f_{n_{2,1}} = f_{n_{1,1}}$, that is, we did not discard the first term in the sequence. Then $(f_{n_{2,1}})$ converges at both r_1 and r_2 . Continue cutting down the sequence in this way, such that at the *j*th step we keep the first j-1 terms of the subsequence $f_{n_{1,1}}, f_{n_{2,2}}, \ldots, f_{n_{j-1,j-1}}$ and cut the rest down to a subsequence also converging at r_j . The resulting subsequence $(f_{n_{j,j}})$ converges at every rational as desired.

(c) [2pts.] Prove that the subsequence of part (b) converges uniformly on all of [0, 1]. [Hint: [0, 1] may be covered by finitely many neighborhoods of length δ for any δ .]

Solution: Rename the subsequence from part (b) to be (f_n) , since we no longer care about the original sequence. Let $\epsilon > 0$. Choose δ such that for $x, y \in [0, 1]$, we have that $|x-y| < \delta$ implies that $|f_n(x) - f_n(y)| < \frac{\epsilon}{3}$ for all n. Now cover [0, 1] by finitely many neighborhoods $V_{\delta}(r_1), V_{\delta}(r_2), \ldots, V_{\delta}(r_k)$ where $\{r_1, \ldots, r_k\}$ are rationals. Now, for each r_i , $(f_n(r_i))$ converges as a sequence of real numbers and therefore satisfies the Cauchy condition, so there exists N_i such that for $n, m \geq N_i$, we have $|f_n(r_i) - f_n(r_i)| < \frac{\epsilon}{3}$. Let $N = \max\{N_1, \ldots, N_k\}$. Now let $x \in [0, 1]$. Then x lies in some $V_{\delta}(r_i)$, and $|x - r_i| < \delta$. So for $n, m \geq N$, we have

$$|f_n(x) - f_m(x)| \le |f_n(x) - f_n(r_i)| + |f_n(r_i) - f_m(r_i)| + |f_m(r_i) - f_m(x)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

As x was arbitrary, we see that (f_n) satisfies the Cauchy condition on [0, 1] and therefore converges uniformly.

This result is called the Arzela-Ascoli Theorem.