
Math 311H
Honors Introduction to Real Analysis

Sample Final

Instructions: You have three hours to complete the exam. There are nine questions, worth a
total of forty-five points. Partial credit will be given for progress toward correct solutions where
relevant. You may not use any books, notes, calculators, or other electronic devices.

Name:

Question Points Score

1 4

2 4

3 5

4 5

5 6

6 5

7 6

8 5

9 5

Total: 45
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1. For each of the following things, either give an example of the described object (no need
to justify it) or write a brief explanation of why this is impossible.

(a) [1pts.] A power series with interval of convergence (c − R, c + R] which converges
absolutely on the entire interval.

Solution: This is impossible. If a power series converges absolutely at any c+ℓ,
then it converges absolutely on [c− |ℓ|, c+ |ℓ|].

(b) [1pts.] A compact set which contains no nontrivial interval.

Solution: The Cantor set is an example.

(c) [1pts.] A function f(x) which is differentiable on all of R with f ′(x) < 4 for all x
and two points a, b ∈ [2,∞) with the property that f(a) = a2 and f(b) = b2.

Solution: This is impossible. Since f is differentiable on R, it follows that f is
also continuous on R. Suppose there are two values a < b such that f(a) = a2

and f(b) = b2. By the Mean Value Theorem, there would then be a point
c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

Substituting in we have
b2 − a2

b− a
= f ′(c) ≤ 4

so we see that in this case b+ a ≤ 4. Hence it is not the case that both a and b
are greater than 2.

(d) [1pts.] An infinite subset S of [0, 1] with no limit point in [0, 1].

Solution: This is impossible. If S is infinite, we may construct a sequence of
elements (sk) of S such that no element is repeated. As this sequence is bounded,
it has a convergent subsequence (snk

) with limit some s. After deleting at most
one appearance of s from (snk

), this is a sequence of points in S none of which
is s converging to s, so we see thath s is a limit point of S. As [0, 1] is closed
and (snk

) is also a sequence in [0, 1], we see that s ∈ [0, 1].

2. [4pts.] Describe all of the functions f which are solutions to the differential equation
f ′′ = −f and may be represented by a power series on some interval about c = 0.

Solution: Suppose that f(x) =
∑∞

n=0 anx
n on some interval about 0. Then f ′(x) =∑∞

n=1 nanx
n−1 and f ′′(x) =

∑∞
n=2 n(n − 1)anx

n−2. Since Taylor’s formula for the
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coefficients implies that the power series representing a function on an interval is
unique, if −f = f ′′ we must have −an−2 = n(n − 1)an for all n ≥ 2, or rephrased
an = − an−2

n(n−1)
. For example, a2 = − a0

2(1)
, and a4 = − a2

4(3)
= a0

4!
. Inductively we see

that the coefficients depend only on the value of n modulo 4, with

f(x) = a0 + a1x− a0
2!
x2 − a1

3!
x3 +

a0
4!
x4 +

a1
5!
x5 − . . .

=
∞∑
n=0

[
a0

(−1)nx2n

(2n)!
+ a1

(−1)nx2n+1

(2n+ 1)!

]
= a0

∞∑
n=0

(−1)nx2n

(2n)!
+ a1

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

= a0 cosx+ a1 sinx

Therefore, all of the functions representable by a power series about 0 with −f = f ′′

are of the form f(x) = a0 cosx+ a1 sinx for some a0, a1 ∈ R.

3. [5pts.] Suppose that f is a differentiable function on an interval A with the property
that |f ′(x)| ≤ M on A. Prove that f is uniformly continuous on A.

Solution: Let ϵ > 0, and let δ = ϵ
M
. Suppose that x, y ∈ A such that |x − y| < δ.

Then by the Mean Value Theorem there is some c ∈ (x, y) such that

f(x)− f(y)

x− y
= f ′(c)

Taking the absolute value of both sides we see that |f(x)−f(y)|
|x−y| = |f ′(c)| ≤ M , or

|f(x)− f(y)| ≤ M |x− y| < ϵ. Since ϵ > 0 was arbitrary we are done.

4. Compute the derivative functions of the following functions where they exist.

(a) [2pts.] f(x) = |x|+ |x− 1|

Solution: We see that this function may be rewritten

f(x) =


1− 2x x < 0

1 0 ≤ x ≤ 1

2x− 1 1 < x
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We conclude that

f(x) =


−2 x < 0

0 0 < x < 1

2 1 < x

and fails to exist at 0 and 1.

(b) [3pts.]

g(x) =

{(
sin2 x

)
· sin

(
1
x

)
x ̸= 0

0 x = 0

Solution: The interesting case is x = 0. We see that

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

sin2(x) sin
(
1
x

)
x

= lim
x→0+

(
sin(x)

x

)
· sinx · sin

(
1

x

)
.

As x → 0, we have that sinx
x

→ 1, the term sinx → 0, and sin
(
1
x

)
is bounded.

So the entire limit is zero. Hence the derivative function is

g′(x) =

{
2 sinx cosx sin

(
1
x

)
− sin2(x)

x2 cos
(
1
x

)
x ̸= 0

0 x = 0

5. Compute the following limits.

(a) [2pts.] limx→0(cosx)
1
x2

Solution: We replace the limit with

lim
x→0

eln((cosx)
1
x2 )

which becomes
lim
x→0

e
ln(cos x)

x2
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The limit of the exponent is

lim
x→0

ln(cosx)

x2
= lim

x→0

− sinx
cosx

2x

= lim
x→0

− sinx

2x cosx

= lim
x→0

− 1

2 cosx
· sinx

x

= −1

2
(1)

= −1

2

where the second step is an application of L’Hospital’s Rule. So the entire limit
is e−

1
2 , or 1√

e
.

(b) [2pts.] limx→0
tanx−x

x3

Solution: We observe that the numerator and denominator both evaluate to
zero at zero, so we know by L’Hospital’s Rule that the limit above is equal to

lim
x→0

sec2(x)− 1

3x2

if it exists. But the numerator and denominator are still continuous and evaluate
to zero at zero, so this second limit is equal to

lim
x→0

2 sec2(x) tanx

6x

which after yet another application of the same principle becomes

lim
x→0

2 sec2(x) tan2 x+ 2 sec4(x)

6
=

0 + 2

6
=

1

3
.

(c) [2pts.] limx→0
1

ex−1
− 1

x

Solution: We rewrite the limit as

lim
x→0

x− ex − 1

xex
.

We observe that the numerator and denominator are both continuous and eval-
uate to zero at zero, so we know by L’Hospital’s Rule that the limit above is
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equal to

lim
x→0

1− ex

ex + xex

which by the same principle is equal to

lim
x→0

−ex

ex + ex + xex
= −1

2
.

6. (a) [4pts.] Suppose that K ⊂ R is compact, and fn : K → R is a sequence of continuous
functions such that fn → f pointwise, and such that fn(x) ≤ fn+1(x) for all x ∈ K
and f is continuous. Show that in fact (fn) converges uniformly.

[Hint: For ϵ > 0, let Kn be the set of x ∈ K for which f(x)−fn(x) ≥ ϵ and consider
the sets K1, K2, . . . ]

Solution: First we note that since each (fn(x)) is an increasing sequence,
fn(x) ≤ f(x) for all n and x ∈ K. For each n, let Kn be the set of
x ∈ K such that f(x) − fn(x) ≥ ϵ. Because of monotonicity, we see that
K1 ⊇ K2 ⊇ K3 ⊇ . . . is a nested sequence of sets. Moreover, Kn is closed since
it is (f − fn)

−1([ϵ,∞)), and fn and f are both continuous so their difference is
as well, and the preimages of closed sets under continuous functions are closed.
As K is bounded, Kn must be bounded, so Kn is compact. Therefore, if Kn is
nonempty for all n, we have ∩∞

n=1Kn ̸= ∅. But this is a contradiction, since for
any x ∈ K there is some N such that n ≥ N implies that |f(x) − fn(x)| < ϵ
and therefore x /∈ Kn for n ≥ N . So, there must exist some N ′ for which
KN ′ is empty, and then for n ≥ N ′, Kn is also empty. This implies that
|f(x)− fn(x)| < ϵ for all x ∈ K and n ≥ N ′. So the convergence is uniform.

This result is called Dini’s Theorem.

(b) [1pts.] Give an example to show that compactness is necessary in the proposition
above. Your example can be either increasing or decreasing; the proposition above
works for monotone generally.

Solution: The sequence fn(x) = x
n
is monotone on [0,∞), each fn is contin-

uous, and (fn) converges pointwise to the continuous function f ≡ 0, but the
convergence is not uniform. (For example, if ϵ = 1, it suffices to note that
fN(N) = 1 is not within distance ϵ of f .)

7. Consider the sequence of functions fn(x) =
xn

1+xn .

(a) [2pts.] What is the pointwise limit of (fn) on [0,∞)?
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Solution: We see that the pointwise limit is

f(x) =


0 x ∈ [0, 1)
1
2

x = 1

1 x ∈ (1,∞)

(b) [2pts.] Does (fn) converge uniformly on [0, 1]?

Solution: No; the uniform limit of continuous functions is continuous, but f is
not continuous at x = 1.

(c) [2pts.] Does (fn) converge uniformly on [2,∞)?

Solution: Yes, for x ≥ 2 we have

|f(x)− fn(x)| =
∣∣∣∣1− xn

1 + xn

∣∣∣∣ = 1

1 + xn
≤ 1

1 + 2n
<

1

2n
.

So, given ϵ > 0, it suffices to choose N such that 1
2N

< ϵ so that n ≥ N implies
that |f(x)− fn(x)| < ϵ.

8. (a) [3pts.] Compute
∑∞

n=1
(−1)nn

3n
.

Solution: We recall that on (−1, 1) we have
∑∞

n=0 x
n = 1

1−x
. Power series are

differentiable term by term with the result having the same radius of conver-
gence, so it follows that

∞∑
n=1

nxn−1 =
1

(1− x)2

and that
∞∑
n=1

nxn =
x

(1− x)2

for x ∈ (−1, 1). In paricular we now have

∞∑
n=1

(−1)nn

3n
−1/3

(4/3)2
= −3

4
.

(b) [2pts.] Estimate sin(.2) to within 1
1000

.
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Solution: We recall that sinx = x − x3

3!
+ x5

5!
− . . . . This is an alternating

sequence, so the error of any given partial sum as an approximation to the total
is bounded above by the absolute value of the next term. We observe that
(.2)5

5!
= .00032

120
is less than 1

1000
, so our approximation is sin(.2) ∼ .2− .23

3!
= 1192

6000
.

9. A sequence of functions (fn) with fn : A → R is said to be compactly convergent if, for
every compact set K ⊂ A, the sequence fn : K → R converges uniformly.

(a) [2pts.] Give an example of a sequence of functions fn : A → R with the property
that (fn) is compactly convergent but not uniformly convergent.

Solution: For example pn(x) = 1+x+· · ·+xn the partial sums of the geometric
series are uniformly convergent on compact sets within their domain but are
not uniformly convergent on the entire interval (−1, 1) on which they converge
pointwise.

(b) [3pts.] Prove that if (fn) converges compactly on a domain A and each fn is con-
tinuous at some c ∈ A, then the limit f is continuous at c. Remark: Note that we
are not assuming A contains any interval.

Solution: Let (an) be a sequence of points in A converging to c. Then K =
{an : n ∈ N} ∪ {c} is closed and bounded, hence compact. So (fn) converges
uniformly on K, implying that f is continuous on K, so in particular f(an) →
f(c). As (an) was arbitrary we are done.


