Math 311H Honors Introduction to Real Analysis

Sample Final

Instructions: You have three hours to complete the exam. There are nine questions, worth a total of forty-five points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name: _____

Question	Points	Score
1	4	
2	4	
3	5	
4	5	
5	6	
6	5	
7	6	
8	5	
9	5	
Total:	45	

- 1. For each of the following things, either give an example of the described object (no need to justify it) or write a brief explanation of why this is impossible.
 - (a) [1pts.] A power series with interval of convergence (c R, c + R] which converges absolutely on the entire interval.
 - (b) [1pts.] A compact set which contains no nontrivial interval.
 - (c) [1pts.] A function f(x) which is differentiable on all of \mathbb{R} with f'(x) < 4 for all x and two points $a, b \in [2, \infty)$ with the property that $f(a) = a^2$ and $f(b) = b^2$.
 - (d) [1pts.] An infinite subset S of [0, 1] with no limit point in [0, 1].

2. [4pts.] Describe all of the functions f which are solutions to the differential equation f'' = -f and may be represented by a power series on some interval about c = 0.

3. [5pts.] Suppose that f is a differentiable function on an interval A with the property that $|f'(x)| \leq M$ on A. Prove that f is uniformly continuous on A.

- 4. Compute the derivative functions of the following functions where they exist.
 - (a) [2pts.] f(x) = |x| + |x 1|
 - (b) [3pts.]

$$g(x) = \begin{cases} (\sin^2 x) \cdot \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

- 5. Compute the following limits.
 - (a) [2pts.] $\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$

 - (b) [2pts.] $\lim_{x\to 0} \frac{\tan x x}{x^3}$ (c) [2pts.] $\lim_{x\to 0} \frac{1}{e^x 1} \frac{1}{x}$

- 6. (a) [4pts.] Suppose that K ⊂ ℝ is compact, and f_n: K → ℝ is a sequence of continuous functions such that f_n → f pointwise, and such that f_n(x) ≤ f_{n+1}(x) for all x ∈ K and f is continuous. Show that in fact (f_n) converges uniformly.
 [Hint: For ε > 0, let K_n be the set of x ∈ K for which f(x) − f_n(x) ≥ ε and consider the sets K₁, K₂,...]
 - (b) [1pts.] Give an example to show that compactness is necessary in the proposition above. Your example can be either increasing or decreasing; the proposition above works for monotone generally.

- 7. Consider the sequence of functions $f_n(x) = \frac{x^n}{1+x^n}$.
 - (a) [2pts.] What is the pointwise limit of (f_n) on $[0, \infty)$?
 - (b) [2pts.] Does (f_n) converge uniformly on [0, 1]?
 - (c) [2pts.] Does (f_n) converge uniformly on $[2, \infty)$?

8. (a) [3pts.] Compute $\sum_{n=1}^{\infty} \frac{(-1)^n n}{3^n}$. (b) [2pts.] Estimate sin(.2) to within $\frac{1}{1000}$.

- 9. A sequence of functions (f_n) with $f_n: A \to \mathbb{R}$ is said to be *compactly convergent* if, for every compact set $K \subset A$, the sequence $f_n: K \to \mathbb{R}$ converges uniformly.
 - (a) [2pts.] Give an example of a sequence of functions $f_n: A \to \mathbb{R}$ with the property that (f_n) is compactly convergent but not uniformly convergent.
 - (b) [3pts.] Prove that if (f_n) converges compactly on a domain A and each f_n is continuous at some $c \in A$, then the limit f is continuous at c. Remark: Note that we are not assuming A contains any interval.