Math 311H
 Honors Introduction to Real Analysis
 Sample Final

Instructions: You have three hours to complete the exam. There are nine questions, worth a total of forty-five points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name:

Question	Points	Score
1	4	
2	4	
3	5	
4	5	
5	6	
6	5	
7	6	
8	5	
9	5	
Total:	45	

1. For each of the following things, either give an example of the described object (no need to justify it) or write a brief explanation of why this is impossible.
(a) $[1 \mathrm{pts}$.$] A power series with interval of convergence (c-R, c+R]$ which converges absolutely on the entire interval.
(b) [1pts.] A compact set which contains no nontrivial interval.
(c) [1pts.] A function $f(x)$ which is differentiable on all of \mathbb{R} with $f^{\prime}(x)<4$ for all x and two points $a, b \in[2, \infty)$ with the property that $f(a)=a^{2}$ and $f(b)=b^{2}$.
(d) $[1 \mathrm{pts}$.$] An infinite subset S$ of $[0,1]$ with no limit point in $[0,1]$.
2. [4pts.] Describe all of the functions f which are solutions to the differential equation $f^{\prime \prime}=-f$ and may be represented by a power series on some interval about $c=0$.
3. [5pts.] Suppose that f is a differentiable function on an interval A with the property that $\left|f^{\prime}(x)\right| \leq M$ on A. Prove that f is uniformly continuous on A.
4. Compute the derivative functions of the following functions where they exist.
(a) [2pts.] $f(x)=|x|+|x-1|$
(b) $[3 \mathrm{pts}$.

$$
g(x)= \begin{cases}\left(\sin ^{2} x\right) \cdot \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

5. Compute the following limits.
(a) $[2 \mathrm{pts}.] \lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}$
(b) $[2$ pts. $] \lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}$
(c) $[2$ pts. $] \lim _{x \rightarrow 0} \frac{1}{e^{x}-1}-\frac{1}{x}$
6. (a) [4pts.] Suppose that $K \subset \mathbb{R}$ is compact, and $f_{n}: K \rightarrow \mathbb{R}$ is a sequence of continuous functions such that $f_{n} \rightarrow f$ pointwise, and such that $f_{n}(x) \leq f_{n+1}(x)$ for all $x \in K$ and f is continuous. Show that in fact $\left(f_{n}\right)$ converges uniformly.
[Hint: For $\epsilon>0$, let K_{n} be the set of $x \in K$ for which $f(x)-f_{n}(x) \geq \epsilon$ and consider the sets $\left.K_{1}, K_{2}, \ldots\right]$
(b) [1pts.] Give an example to show that compactness is necessary in the proposition above. Your example can be either increasing or decreasing; the proposition above works for monotone generally.
7. Consider the sequence of functions $f_{n}(x)=\frac{x^{n}}{1+x^{n}}$.
(a) [2pts.] What is the pointwise limit of $\left(f_{n}\right)$ on $[0, \infty)$?
(b) [2pts.] Does $\left(f_{n}\right)$ converge uniformly on $[0,1]$?
(c) [2pts.] Does $\left(f_{n}\right)$ converge uniformly on $[2, \infty)$?
8. (a) [3pts.] Compute $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{3^{n}}$.
(b) $[2$ pts. $]$ Estimate $\sin (.2)$ to within $\frac{1}{1000}$.
9. A sequence of functions $\left(f_{n}\right)$ with $f_{n}: A \rightarrow \mathbb{R}$ is said to be compactly convergent if, for every compact set $K \subset A$, the sequence $f_{n}: K \rightarrow \mathbb{R}$ converges uniformly.
(a) [2pts.] Give an example of a sequence of functions $f_{n}: A \rightarrow \mathbb{R}$ with the property that $\left(f_{n}\right)$ is compactly convergent but not uniformly convergent.
(b) [3pts.] Prove that if $\left(f_{n}\right)$ converges compactly on a domain A and each f_{n} is continuous at some $c \in A$, then the limit f is continuous at c. Remark: Note that we are not assuming A contains any interval.
