Math 311H

Honors Introduction to Real Analysis

Final

Instructions: You have three hours to complete the exam. There are nine questions, worth a total of forty-five points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name:

Question	Points	Score
1	4	
2	5	
3	5	
4	4	
5	5	
6	5	
7	5	
8	6	
9	6	
Total:	45	

1. For each of the following things, either give an example of the described object (no need to justify it) or write a sentence saying why this is impossible.
(a) [1pts.] A subset $E \subset \mathbb{R}$ whose limit points are exactly the rational numbers \mathbb{Q}.
(b) [1pts.] A power series that converges uniformly on its interval of convergence.
(c) $[1 \mathrm{pts}$.$] A point x \in\left(0, \frac{\pi}{2}\right)$ such that $x \geq \tan x$.
(d) [1pts.] A nonempty connected set which contains no nonempty compact subset.
2. [5pts.] Let $\left(f_{n}\right)$ be a sequence of functions on an interval (a, b) such that each f_{n} is uniformly continuous on (a, b). Suppose that $f_{n} \rightarrow f$ uniformly on (a, b). Prove or disprove: f is also uniformly continuous on (a, b).
3. (a) [3pts.] Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series with the property that infinitely many a_{n} are integers. Prove that the series must have radius of convergence $R \leq 1$.
(b) [2pts.] Give an example of a power series of the form above with $R=1$.
4. [4pts.] A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to have a fixed point if $f(x)=x$. Prove that if f is differentiable on A with $f^{\prime}(x) \neq 1$ for all x, then f has at most one fixed point on A.
5. (a) $[3 \mathrm{pts}$.$] Compute \sum_{n=2}^{\infty} \frac{n^{2}}{3^{n}}$.
(b) [2pts.] Estimate $\frac{1}{e}$ to within $\frac{1}{100}$.
6. Consider the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2}+n}{n^{2}}$.
(a) [2pts.] At what points does the series converge? Is the convergence conditional or absolute?
(b) [3pts.] Prove that the series converges uniformly on every bounded interval. [Hint: Consider derivatives.]
7. Compute the derivative functions of the following functions, where they exist.
(a) [3pts.] $g(x)=x e^{|x|}$
(b) $[2 \mathrm{pts}$.

$$
f(x)= \begin{cases}x \sin x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

8. Compute the following limits.
(a) $[2 \mathrm{pts}.] \lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$
(b) $[2$ pts. $] \lim _{x \rightarrow 0^{+}} x^{x}$
(c) $[2$ pts. $] \lim _{x \rightarrow 0} \frac{1-\cos x}{e^{x}-1}$
9. A sequence of functions $f_{n}: A \rightarrow \mathbb{R}$ is said to be equicontinuous if for every $\epsilon>0$ there is a $\delta>0$ such that $|x-y|<\delta$ implies that $\left|f_{n}(x)-f_{n}(y)\right|<\epsilon$ for all $x, y \in A$ and all n.
(a) [2pts.] Give an example of a pointwise convergent sequence of functions $f_{n}: A \rightarrow \mathbb{R}$ such that each f_{n} is uniformly continuous on A but $\left(f_{n}\right)$ is not equicontinuous on A.
(b) [2pts.] Let $\left(f_{n}\right)$ with $f_{n}:[0,1] \rightarrow \mathbb{R}$ be equicontinuous and uniformly bounded; that is, there exists M with the property that $\left|f_{n}(x)\right| \leq M$ for all $x \in[0,1]$ and all n. Prove $\left(f_{n}\right)$ has a subsequence which converges pointwise at every rational number. [Hint: By Bolzano-Weierstrass, there is certainly a subsequence of $\left(f_{n}(1)\right)$ which converges. How could you modify this to converge at a second rational?]
(c) $[2 \mathrm{pts}$.$] Prove that the subsequence of part (b) converges uniformly on all of [0,1]$. [Hint: [0,1] may be covered by finitely many neighborhoods of length δ for any δ.]

This page is for scratch work. Please label anything you want graded very clearly.

