Math 311H Honors Introduction to Real Analysis

Final

Instructions: You have three hours to complete the exam. There are nine questions, worth a total of forty-five points. Partial credit will be given for progress toward correct solutions where relevant. You may not use any books, notes, calculators, or other electronic devices.

Name: _____

Question	Points	Score
1	4	
2	5	
3	5	
4	4	
5	5	
6	5	
7	5	
8	6	
9	6	
Total:	45	

- 1. For each of the following things, either give an example of the described object (no need to justify it) or write a sentence saying why this is impossible.
 - (a) [1pts.] A subset $E \subset \mathbb{R}$ whose limit points are exactly the rational numbers \mathbb{Q} .
 - (b) [1pts.] A power series that converges uniformly on its interval of convergence.
 - (c) [1pts.] A point $x \in (0, \frac{\pi}{2})$ such that $x \ge \tan x$.
 - (d) [1pts.] A nonempty connected set which contains no nonempty compact subset.

2. [5pts.] Let (f_n) be a sequence of functions on an interval (a, b) such that each f_n is uniformly continuous on (a, b). Suppose that $f_n \to f$ uniformly on (a, b). Prove or disprove: f is also uniformly continuous on (a, b).

- 3. (a) [3pts.] Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with the property that infinitely many a_n are integers. Prove that the series must have radius of convergence $R \leq 1$.
 - (b) [2pts.] Give an example of a power series of the form above with R = 1.

Math 311H	Final	Page 4 of 10

4. [4pts.] A function $f : \mathbb{R} \to \mathbb{R}$ is said to have a fixed point if f(x) = x. Prove that if f is differentiable on A with $f'(x) \neq 1$ for all x, then f has at most one fixed point on A.

5. (a) [3pts.] Compute $\sum_{n=2}^{\infty} \frac{n^2}{3^n}$. (b) [2pts.] Estimate $\frac{1}{e}$ to within $\frac{1}{100}$.

- 6. Consider the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$.
 - (a) [2pts.] At what points does the series converge? Is the convergence conditional or absolute?
 - (b) [3pts.] Prove that the series converges uniformly on every bounded interval. [Hint: Consider derivatives.]

7. Compute the derivative functions of the following functions, where they exist.

- (a) [3pts.] $g(x) = xe^{|x|}$
- (b) [2pts.]

$$f(x) = \begin{cases} x \sin x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

- 8. Compute the following limits.
 - (a) [2pts.] $\lim_{x \to 0} \frac{\sqrt{1+x} \sqrt{1-x}}{x}$
 - (b) [2pts.] $\lim_{x\to 0^+} x^x$
 - (c) [2pts.] $\lim_{x\to 0} \frac{1-\cos x}{e^{x}-1}$

- 9. A sequence of functions $f_n \colon A \to \mathbb{R}$ is said to be *equicontinuous* if for every $\epsilon > 0$ there is a $\delta > 0$ such that $|x y| < \delta$ implies that $|f_n(x) f_n(y)| < \epsilon$ for all $x, y \in A$ and all n.
 - (a) [2pts.] Give an example of a pointwise convergent sequence of functions $f_n \colon A \to \mathbb{R}$ such that each f_n is uniformly continuous on A but (f_n) is not equicontinuous on A.
 - (b) [2pts.] Let (f_n) with $f_n: [0,1] \to \mathbb{R}$ be equicontinuous and uniformly bounded; that is, there exists M with the property that $|f_n(x)| \leq M$ for all $x \in [0,1]$ and all n. Prove (f_n) has a subsequence which converges pointwise at every rational number. [Hint: By Bolzano-Weierstrass, there is certainly a subsequence of $(f_n(1))$ which converges. How could you modify this to converge at a second rational?]
 - (c) [2pts.] Prove that the subsequence of part (b) converges uniformly on all of [0, 1]. [Hint: [0, 1] may be covered by finitely many neighborhoods of length δ for any δ .]

Math 311H	Final	Page 10 of 10

This page is for scratch work. Please label anything you want graded very clearly.