Problem 3.2.2

First we consider \(A = \{ (-1)^n + \frac{2}{n} : n \in \mathbb{N} \} \).

(d) Recall from last week that the limit points of \(A \) are \(-1\) and \(1\). Since \(1\) is already in the set for \(n = 2\), the closure of \(A \) is \(\overline{A} = A \cup \{-1\} \).

Next we consider \(B = \{ x \in \mathbb{Q} : 0 < x < 1 \} \).

(d) By part (a) from last week, the limit points of \(B \) are all of the points in \([0, 1]\) and there are no isolated points. Ergo, the closure of \(B \) is \(\overline{B} = [0, 1] \).

Problem 3.2.11

(a) We claim that for sets \(A, B \in \mathbb{R} \), we have \(\overline{A \cup B} = \overline{A} \cup \overline{B} \). First suppose \(x \in \overline{A \cup B} \). If \(x \in \overline{A} \), either \(x \in A \) or \(x \) is a limit point of \(A \). If \(x \in A \), then clearly \(x \in A \cup B \), hence \(x \in \overline{A} \cup \overline{B} \).

If \(x \) is a limit point of \(A \), there is a sequence of points \((a_n)\) in \(A \) with \(a_n \neq x \) for any \(n \) such that \(\lim a_n = x \). Then \((a_n)\) is also a sequence of points in \(A \cup B \) with the same properties, hence we see that \(x \) is also a limit point of \(A \cup B \), and therefore \(x \in \overline{A \cup B} \). So \(\overline{A} \subseteq \overline{A \cup B} \).

In the other direction, suppose that \(x \in \overline{A \cup B} \). Again, if \(x \in A \cup B \) then one of \(x \in A \) and \(x \in B \) is true, hence \(x \in \overline{A} \cup \overline{B} \). Now suppose that \(x \) is a limit point of \(A \cup B \). Then there is some sequence \((c_n) \) of points in \(A \cup B \) such that \(c_n \neq x \) for any \(x \) and \(\lim c_n = x \). Now, we see that \(\{ n : c_n \in A \} \cup \{ n : c_n \in B \} = \mathbb{N} \), so at least one of these two sets of indices is infinite. Suppose without loss of generality that \(\{ n : c_n \in A \} \) is infinite. Then there is a subsequence \((c_{n_k}) \) of \((c_n) \) consisting of all the entries \(c_n \) of the sequence which lie in \(A \). Since subsequences of a convergent sequence all converge to the limit of the sequence, we see that \(\lim c_{n_k} = x \). Moreover, \(c_{n_k} \neq x \) for all \(n_k \). So \(x \) is a limit point of \(A \) and \(x \in \overline{A} \subseteq \overline{A \cup B} \). We conclude that \(\overline{A \cup B} \subseteq \overline{A} \cup \overline{B} \).

Since we now have inclusions in both directions, we have proved that \(\overline{A \cup B} = \overline{A} \cup \overline{B} \).

(b) This result does not extend to infinite unions. For example, let \(A_n = \frac{1}{n} \). Then \(\overline{A_n} = \{ \frac{1}{n} \} \) since finite sets have no limit points, but \(\bigcup_{n=1}^{\infty} A_n = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = \{1\} \cup \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = (\bigcup_{n=1}^{\infty} \overline{A_n}) \cup \{1\} \).
Problem 3.2.13

Suppose that \(A \subset \mathbb{R} \) is a nonempty set which is both closed and open, and is not all of \(\mathbb{R} \). Then we can find some \(x \in \mathbb{R} \) such that \(x \notin A \). Observe that \(B = A \cap (-\infty, x) = A \cap [-\infty, x] \) is still both closed and open, since finite intersections of open sets are open and finite intersections of closed sets are closed. If \(B \) is nonempty, since \(B \) is bounded above it has a supremum in \(\mathbb{R} \), call it \(y \). Since \(B \) is closed, \(y \in B \). Since \(B \) is open, \(y \notin B \). This is a contradiction. If \(B \) is empty, we have \(A \) bounded below by \(x \), and we may repeat this argument with the infimum of \(B \), again obtaining a contradiction. So the original assumption that it was possible to find \(x \notin A \) for \(A \) nonempty is false. Hence \(A \) is either \(\emptyset \) or \(\mathbb{R} \).

Problem 3.2.14

(a) Recall that \(\overline{E} \) is the union of \(E \) and the set \(L \) of limit points of \(E \). But \(E \) is closed if and only if \(E \) contains all its limit points, or equivalently if \(L \subset E \) and therefore \(\overline{E} = E \cup L = E \). So we are done.

Similarly, \(E^o \) is the set of points \(x \in E \) with the property that there is some \(\epsilon > 0 \) such that \(V_{\epsilon}(x) \subset E \). But \(E \) is open if and only if every \(x \in E \) has this property, or in other words if and only if \(E^o = E \).

(b) Let \(E \subseteq \mathbb{R} \). Since \(\overline{E} \) is closed and contains \(E \), \((\overline{E})^c \) is an open set contained in \(E^c \). Therefore in particular, \((\overline{E})^c \subseteq (E^c)^o \). Now by the same token, \((E^c)^o \) is an open set contained in \(E^c \), so \(((E^c)^o)^c \) is a closed set containing \((E^c)^c = E \), hence contains \(\overline{E} \). So \(\overline{E} \subseteq ((E^c)^o)^c \), implying that \((E^c)^o \subseteq \overline{E}^c \). Ergo we see that \((\overline{E})^c = (E^c)^o \).

For the other statement, again start with \(E \subset \mathbb{R} \). Let \(F = E^c \). Then by the preceding part, \(\overline{F}^c = (F^c)^o \), so we have that \(\overline{E}^c = E^o \). Taking the complement of both sides we conclude that \(\overline{E}^c = (E^o)^c \).

Section 3.3

Problem 3.3.1

Suppose that \(K \subset \mathbb{R} \) is compact and nonempty. Then \(K \) is bounded, so \(K \) has a supremum and infimum. Moreover \(K \) is closed, and a closed bounded set contains its supremum and infimum, so \(K \) in fact contains its supremum and infimum.

Problem 3.3.2

(a) The set \(\mathbb{N} \) is not compact. The sequence \((1, 2, 3, \ldots)\) has no subsequence converging in \(\mathbb{N} \), or indeed converging at all.

(b) The set \(A = \mathbb{Q} \cap [0, 1] \) is not compact. The sequence \((.3, .31, .314, .3141, \ldots)\) whose limit is \(\frac{\pi}{10} \) has no subsequence converging in \(A \).

(c) The Cantor set is compact, since it is closed and bounded in \(\mathbb{R} \).
(d) The set \(A = \{ a_n = 1 + \frac{1}{4} + \frac{1}{9} + \cdots + \frac{1}{n^2} : n \in \mathbb{N} \} \) is not compact. The sequence \((a_n)\) has no subsequence converging in \(A \).

(e) The set \(A = \{ 1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots \} \) is compact. It is clearly bounded. As for whether it is closed, notice that a convergent sequence of points \((a_n)\) in \(A \) has a convergent monotone subsequence \((a_{n_k})\). If \((a_{n_k})\) is not eventually constant, then after possibly deleting repeated terms it must be a subsequence of \(\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots \right) \), and therefore converge to 1. So 1 is the only limit point of \(A \). And \(1 \in A \), so in fact \(A \) is closed, hence compact since it is also bounded.

Problem 3.3.11

(a) The open cover \(\{ O_n = (n - \frac{1}{2}, n + \frac{1}{2}) : n \in \mathbb{N} \} \) of \(\mathbb{N} \) has no finite subcover, since each \(O_n \) contains only a single point of the infinite set \(\mathbb{N} \).

(b) Consider the sets

\[
O_1 = \mathbb{Q} \cap ((-1, .3) \cup (.4, 2)) \\
O_2 = \mathbb{Q} \cap ((-1, .31) \cup (.32, 2)) \\
O_3 = \mathbb{Q} \cap ((-1, .314) \cup (.315, 2))
\]

and so on, so that \(O_n \) is missing all rationals within an interval of length \(\frac{1}{10^n} \) containing \(\frac{\pi}{10} \) but all rationals in the interval \([0, 1]\) fall within \(O_n \) for sufficiently large \(n \). This open cover of \(A = \mathbb{Q} \cap [0, 1] \) does not have a finite subcover - if it did, then since \(O_1 \subset O_2 \subset O_3 \subset \ldots \), we would have that \(A \subset O_N \) for some \(N \), which is plainly false.

(d) For the set \(A = \{ a_n = 1 + \frac{1}{4} + \frac{1}{9} + \cdots + \frac{1}{n^2} : n \in \mathbb{N} \} \), we may consider the open cover \(\{ O_n = \left(a_n - \frac{1}{2(n+1)^2}, a_n + \frac{1}{2(n+1)^2} \right) : n \in \mathbb{N} \} \). Then each of the open sets \(O_n \) contains a single point of the infinite set \(A \), hence there is no finite subcover.