Math 227A: Suggested Exercises for Week 9

The following are suggested exercises for Week 9:

2. *The Splitting Principle* Let \(p: V \rightarrow B \) be a complex \(n \)-plane vector bundle, and \(P(V) \) its projectivization, with \(q: P(V) \rightarrow B \) the fibre bundle map. Show the vector bundle \(q^*V \) over \(P(V) \) always splits into the direct sum of a line bundle and an \((n-1)\)-plane bundle. Conclude that in proving natural relations for the Chern classes, it suffices to compute on a direct sum of line bundles.

3. Let \(V \rightarrow B \) be an \(n \)-plane complex bundle, and for \(m < n \) let \(\Lambda^m V \) be the vector bundle whose fibre is \(\Lambda^m F \) for every fibre \(F \) of \(B \). Compute the total Chern class of \(\Lambda^m(V) \) in terms of the Chern classes of \(V \).

4. Show that for \(M \) a smooth closed oriented manifold, the Euler class \(e(M) \) evaluated on the fundamental homology class of \(M \) is equal to the algebraic self-intersection number \([TM]^2 \) of the zero-section of \(TM \) with itself. (Hint: think about Euler characteristic and vector fields.) Use this to show the adjunction formula: If \(S \) is a complex surface (so, a real 4-diml manifold) and \(C \) is an embedded complex curve of genus \(g(C) \), then \(2g(C) - 2 = [C]^2 - c_1(S)[C] \), where \([C]^2\) is the algebraic self-intersection number of \(C \) inside \(S \) and \(c_1(S) \) is the Chern class of \(S \) evaluated on the homology class represented by \(C \).