Math 131B-1: Optional “Homework” 10

1. Do Apostol 12.9, 12.12, 12.14.

2. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be given by
 \[
 f(x, y) = \begin{cases}
 \frac{x^3}{x^2 + y^2} & (x, y) \neq (0, 0) \\
 0 & (x, y) = (0, 0)
 \end{cases}
 \]
 Show that all the directional derivatives of \(f \) exist at \((0, 0)\), but \(f \) is not differentiable.

3. Show that if \(f : \mathbb{R}^n \to \mathbb{R}^m \) has \(f'(x) = 0 \) for all \(x \), then \(f \) is constant. (Hint: Two points determine a line, and you can take a directional derivative along any line away from a point.)

4. Try to find a function \(f : \mathbb{R}^2 \to \mathbb{R} \) whose mixed partial derivatives \(D_{2,1}f \) and \(D_{1,2}f \) exist and are not equal. (Hint: By Clairaut’s theorem, what properties can’t these partial derivatives have?)