Math 131B-2: Homework 9

Due: June 6, 2014

1. Read Tao Sections 16.3-5.

2. Prove Pythagoras’ Identity: If \(<f, g> = 0 \), then \(\|f + g\|^2 = \|f\|^2 + \|g\|^2 \).

3. Prove that the convolution \(f \ast g \) of two continuous \(\mathbb{Z} \)-periodic function is continuous. Hint: You will need to use that \(f \) is bounded and \(g \) is uniformly continuous.

4. Do Tao problem 16.2.3. Hint: You can’t do this problem with a single function \(g \); if you try to, you will sometimes get negative values of \(c \) and \(d \) when you solve. Instead, you need to be able to produce functions \(g \) with \(\sup_{[0,1]} g = k \) and \(\int_0^1 g = \ell \) such that \(kA^2 - \ell B^2 > 0 \).

5. Do Tao problems 16.2.6, 16.5.1, 16.5.2, and 16.5.4. Note the existence of a typo in 16.5.4: It should say \(\hat{f}'(n) = 2\pi i n \hat{f}(n) \).

Caveat: This assignment is not as short as it looks. Several of the problems above have multiple parts.