1. Read Sections 19-20 in Ross.

2. Do problems 17.2, 17.3 (a),(c), 17.10, 17.12, 18.4, 18.7, 18.10, 19.1(a),(c),(f),(g), 19.2(b), 19.4 in Ross.

3. The stars over Babylon. For each rational number \(r \in (0, 1] \), write \(r = \frac{p}{q} \) where \(p, q \in \mathbb{N} \) are natural numbers with no common factors. Then consider the following function on \([0, 1]\):

\[
f(x) = \begin{cases}
\frac{1}{q} & x = \frac{p}{q} \text{ is rational} \\
0 & x \text{ is irrational.}
\end{cases}
\]

We claim that \(f \) is discontinuous at every rational number in \((0, 1]\) and continuous at every rational.

- Discontinuity at each rational. Let \(x_0 \in (0, 1] \) such that \(x_0 \) is rational. For \(n \in \mathbb{N} \), pick \(x_n \) an irrational in \((x_0 - \frac{1}{n}, x_0) \cap (0, 1]\). Use this sequence to show \(f \) is discontinuous at \(x_0 \).

- Continuity at each irrational. Let \(x_0 \in (0, 1] \) such that \(x_0 \) is irrational. Let \(N \) be a natural number. Let

\[
\delta_N = \min \{|x_0 - \frac{i}{n}| : 0 \leq i \leq n \leq N, \ i, n \in \mathbb{N}\}.
\]

Observe that because \(x_0 \neq \frac{i}{n} \) for any \(\frac{i}{n} \), \(\delta_N > 0 \). Prove that for \(x \in (0, 1] \), if \(|x - x_0| < \delta_N \), then \(|f(x) - f(x_0)| < \frac{1}{N} \). Conclude that \(f \) is continuous at \(x_0 \).

This example helps demonstrate that our intuition for what continuity should “look like” on a graph is in general insufficiently subtle.