Instructions: You have 50 minutes to complete the exam. There are five problems, worth a total of fifty points. You may not use any books, notes, or calculators. Show all your work; partial credit will be given for progress toward correct solutions, but unsupported correct answers will not receive credit. Remember to make your drawings large and clear, and to label your axes.

Write your solutions in the space below the questions. If you need more space, use the back of the page. Do not turn in your scratch paper.

Name:
UID:
Section:

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1.

Consider the plane curve \(r(t) = (t^2 - 2t, e^t) \).

(a) [4pts.] Calculate the curvature of \(r(t) \) at \(t = 1 \).

(b) [5pts.] Find the osculating circle to \(r(t) \) at \(t = 1 \). [Hint: This can be done without any additional differentiation.]

(c) [1pts.] Explain, in words, what the osculating circle represents geometrically.
Problem 2.
Consider the space curve $\mathbf{r}(t) = \langle 2t, 4t^{\frac{2}{3}}, 2t^{\frac{3}{2}} \rangle$.

(a) [5pts.] Find the length of this curve over the interval $0 \leq t \leq 1$.

(b) [5pts.] Find a reparametrization of this curve such that the speed of the curve at the point $(2, 4, 2)$ is 21.
Problem 3.

Decide whether each of the following limits exist, and if they do, compute them. Justify your answers.

(a) [3pts.] \(\lim_{(x,y) \to (4,2)} \frac{y^2 - 2}{\sqrt{x^2 - 1}} \).

(b) [3pts.] \(\lim_{(x,y) \to (0,0)} \frac{xy}{3x^2 + 2y^2} \).

(c) [4pts.] \(\lim_{(x,y) \to (0,0)} \tan x \sin \left(\frac{1}{(|x| + |y|)} \right) \).
Consider the quadric surface $16y^2 - 9x^2 - z^2 = -144$.

(a) [5pts.] Draw this surface. Be sure to clearly label your axes.

(b) [5pts.] Parametrize the intersection of this surface and the hyperbolic cylinder $25y^2 = z^2 + 25$. (Note that this curve has two pieces, corresponding to $z > 0$ and $z < 0$.)
Problem 5.
Consider the multivariable function \(f(x, y) = \sqrt{4x - 3y^2} \).

(a) [5pts.] Draw a contour map of \(f \), using the constants \(c = 0, 1, \) and \(2 \).

(b) [5pts.] Find the partial derivatives of \(f \) at \((1, 1) \). Indicate what the signs of these numbers tell you about the contour map you drew.