Recall last time \((Y, y_0, y_1)\) a triad given by filling \(M = (u/M, s_0, s_1)\) along \(\delta, \gamma, \delta\) with \(\delta \gamma_0 = \delta \gamma_1 = \delta \gamma = 1\).

A triple \((\xi, \alpha, \beta, \delta, \gamma)\) specifies a 4-mfbd\(\breve{X}\) w/ body \(-Y_{ab} - Y_{ba} + Y_{ab}\).

Counting triangles we get a map
\[
\mathcal{C}(\hat{Y}_{ab}) \otimes \mathcal{C}(\hat{y}_{ab}) \rightarrow \mathcal{C}(\hat{Y}_{ab})
\]
standard input here

\(\text{Last time } F : \hat{H}_F (Y_{ab}) \rightarrow \hat{H}_F (Y_{ab})\)

\(\text{We have a triangle}\)

\[
\begin{array}{ccc}
\hat{H}_F (Y_{ab}) & \xrightarrow{F} & \hat{H}_F (y_{ab}) \\
\hat{H}_F (\bar{Y}_{ab}) & \xleftarrow{F_i} & \hat{H}_F (\bar{Y}_{ab}) \\
\hat{H}_F (Y_{ab}) & \xleftarrow{F_0} & \hat{H}_F (Y_{ab})
\end{array}
\]

\(\text{Last time } \text{Computed For } S^3_\epsilon (U) \text{ by hand. Exercise: Compute For } S^3_p (U)\).

Today: Why is this sequence exact? (Sketch)

Idea: Prove that \(M(F)\) is chain homotopy equivalent to \(\mathcal{C}(\hat{Y}_{ab})\).

Why? We always have an SES, For \(F : A \rightarrow B\) a chain map
\[
0 \rightarrow B \rightarrow M(F) \rightarrow A \rightarrow 0
\]
and a corresponding yes.
Homological algebra

Suppose that $\xi: \{ F_i \}$ be a collection of chain maps and let $\xi: F_i: A_i \to A_{i+1}$ be a collection of chain maps on A_i.

1. F_i of ξ is chain homotopic to zero via some chain homotopy $H_i: A_i \to A_{i+1}$.

2. $Y_i: F_{i+2} \circ H_{i+1} \circ F_i: A_i \to A_{i+3}$ is a quasi-isomorphism.

Then $H_0(A_0(Y_i)) \cong H_0(A_{i+2})$.

Exercise Y_i is a chain map, and (two applications of) the Five Lemma shows the statement is true.

Finishing the surgery triangle proof

To do this correctly, we pick infinitely many small translates of β, γ, δ so that all the A_i will come from distinct curves $\hat{\alpha}$ and $\hat{\beta}$.

$A_3(x, y) = \hat{\alpha}(x, y) = \hat{\beta}(y)$

For the second hypothesis, we use the area filtration.
Recall an \mathcal{F}-filtration of a group G is a sequence of subgroups indexed by $r \in \mathbb{R}$ such that:

- $G_r \leq G_s$ if $r < s$
- $G = \bigcup_{r \in \mathbb{R}} G_r$

This induces a partial ordering on G: $x \leq y$ if $r \geq s$ for $x \in G_r$, but $y \in G_s$.

We have a filtration on $\hat{CF}(Y_{ab})$ via fixing an intersection point x_0 and letting $F: \pi_1 \to \mathbb{R}$ by x goes to $\hat{F}(x) = A(D(x)) = 2n_2(x), A(x)$ for some $\theta \in \pi_2(x, x_0)$.

Proof: If $b = 0$, we need to pick a form A such that $A(p) = 0$ for any $p \in \pi_2(x, x_0)$.

Lemma. If B' is a small perturbation of B, then the chain map

\[\hat{CF}(Y_{ac}) \to \hat{CF}(Y_{ac'},) \]

\[x \to \hat{F}_{B \to B'}(\xi \otimes \theta_{BB'}) \]

is an isomorphism on homology.

Proof.

There is a unique closest point map F.

We can compare to $\hat{F}_{B \to B'}(\xi \otimes \theta_{BB'}) = \delta(\xi)$. The difference $F - \delta$ is some sum of elements $y \in F(c(x)) \leq F(y)$ in the area filtration.

Since δ is an isomorphism on the group level, so is F.
This gives us maps $\theta_i : A_i \rightarrow A_{i+2}$ via this isomorphism.

The claim here is that $F_3 \circ H_1, H_2 \circ F_1 : A_i \rightarrow A_{i+2}$ is chain homotopy equivalent via counting pseudoholomorphic maps of pentagons between (x, y, d, β, y').

\triangleright Also any copy of

We get a nullhomotopy of

$F_{\alpha \beta \gamma} \circ (\hat{h}_{\alpha \beta} \circ (\hat{e}_x \circ \hat{e}_y \circ \hat{e}_z \circ \hat{e}_w \circ \hat{e}_v) \circ \theta_{\gamma \beta \alpha}) = \int F_3 \circ H_1$

$+ \hat{h}_{\alpha \beta \gamma} \circ (\hat{e}_x \circ \hat{e}_y \circ \hat{e}_z \circ \hat{e}_w \circ \hat{e}_v) \circ \theta_{\gamma \beta \alpha}$

$+ \hat{h}_{\alpha \beta \gamma} \circ F_{\alpha \beta} \circ (\hat{e}_x \circ \hat{e}_y \circ \hat{e}_z \circ \hat{e}_w \circ \hat{e}_v) \circ \theta_{\gamma \beta \alpha}$

$+ \hat{h}_{\alpha \beta \gamma} \circ F_{\alpha \beta} \circ (\hat{e}_x \circ \hat{e}_y \circ \hat{e}_z \circ \hat{e}_w \circ \hat{e}_v) \circ \theta_{\gamma \beta \alpha}$

$= \int H_2 \circ F_1$

$+ F_{\alpha \beta \gamma} \circ (\hat{e}_x \circ \hat{e}_y \circ \hat{e}_z \circ \hat{e}_w \circ \hat{e}_v) \circ \theta_{\gamma \beta \alpha}$

\triangleright Claim. This is 0, i.e.,

The inner term is 0. \hspace{1cm}\triangleright

\triangleright \hspace{1cm}\triangleright
In the general case, this also counts

We now this follows from homological algebra.

In the \mathbb{HF}^+ case, one has to be more careful that all sums involved in the maps \mathcal{F} are actually finite.

Example

The standard proof of $\mathbb{HF}^+(\Sigma(2,3,5))$ involves showing that for a knot with a lens space surgery, to $L(p,q)$

$$\mathbb{HF}^+(\Sigma(p,q), \mathcal{D}) = \{ \text{link} \}$$

In \mathbb{HF}^+, has a lens space surgery $(S^3, (3,1))$ to $L(\cdot, \cdot)$

$$m) \mathbb{HF}^+(\Sigma(3,1), \mathcal{D})$$

\[\ldots \text{diagram} \ldots \]
\[\cdots \to HF^+(S^3) \to HF^+(S^3_{o} (RHT), \mathbb{I}) \to HF^+(S^3_{+1} (RHT)) \to \]

\[(S^3, S^3_{o} (RHT), S^3_{+1} (RHT)) \]

Example \[\Sigma (2, 3, 7) \]

\[\to HF^+(\Sigma (2, 3, 7)) \to HF^+(\Sigma_0) \to HF^+(S^3) \to \]

\[(S^3, S^3_{-1} (RHT), S^3_{o} (RHT)) \]
More generally

There is a map \(\hat{F}_{w,s} : \hat{HF}(Y, sl_w) \to \hat{HF}(Y_2, sl_{Y_2}) \) for any cobordism \(W \)

If \(W \) is between rational homology spheres,

\[
g_t(\hat{F}_{w,s}(Y) - \hat{F}(Y)) = \frac{c_t(s)^2 - 2 \chi(W) - 3 \sigma(W)}{4}
\]

For \(W = S^3 \cup 2\text{-handle} = D^2 \times S^2 = \# \text{ball} \)

\[
\frac{c_t(s)^2 - 2 \chi(W) - 2 \sigma(W)}{4} = \frac{0-2-0}{4} = -\frac{1}{2}
\]

For a set \(1\text{-handles} : Y_2 \cong Y \# (S^1 \times S^2) \)

\[
\hat{H}_1(Y_2) \cong \hat{H}_1(Y) \otimes \Lambda^* H^* (\# (S^1 \times S^2))
\]

\(\otimes \) a top-degree generator

\[
\hat{F}_{w,s}(Y_2) = \otimes \otimes
\]

For a set \(2\text{-handles} : Y_1 \cong Y_2 \# S^1 \times S^2 \), \(\hat{F}_w : \hat{HF}(Y_1) \to \hat{HF}(Y_2) \) via projection onto the bottom-degree element in \(\Lambda^* H^* (\# (S^1 \times S^2)) \)

For a \(2\text{-handles} \): We find a Heegaard triple diagram that includes each of the attaching circles.