Relationship of \tilde{HF}_K to Δ_K

A general note

<table>
<thead>
<tr>
<th>Object</th>
<th>Categorification</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{N}</td>
<td>\dim Vector spaces</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>\mathbb{K} Graded vector spaces</td>
</tr>
<tr>
<td>$\mathbb{Z}[[x, x^{-1}]]$</td>
<td>Bigraded vector spaces</td>
</tr>
<tr>
<td>$\mathcal{X}(M)$</td>
<td>$H^*(M)$</td>
</tr>
<tr>
<td>$A_K(t)$</td>
<td>$\tilde{HF}_K(K)$</td>
</tr>
<tr>
<td>$V_K(t)$</td>
<td>$K^h(K)$</td>
</tr>
</tbody>
</table>

Claim: $\sum_{i,j} \chi(\tilde{HF}_K(k_{ij})) e^i = \sum_{i,j} \dim(\tilde{HF}_K(k_{ij})) e^i = \Delta_K(t)$

Why?

Kaufman states

We look at a projection and forget (briefly the crossing data). We mark one edge with a basepoint.

A Kaufman state is a map that associates to each double point v_i one of the four corners in such a way that we use each region of $S^2 - S^1$ once.

$\tilde{c} = (c_1, \ldots, c_n)$
To a crossing we associate

\[\begin{align*}
&\begin{array}{c}
\text{Fig.}
\end{array}
\end{align*} \]

And \(\theta(c_i) \)

\[\begin{align*}
&\begin{array}{c}
\text{Fig.}
\end{array}
\end{align*} \]

\[\sum_{c \in K} \prod_{i=1}^{n} (-1)^{\theta(c_i)} \theta(c_i) \text{ (symmetrized)} \]

is the Alexander polynomial of \(K \).

Exercise Check that this is true.

- \(A_K(0) = 1 \)
- \(A_L^{-} - A_L^{+} = (t^{-1/2} - t^{1/2}) \Delta(L_0) \)

Why relevant? The Kauffman states correspond to generators in the

pringle-chip diagram.

\[\begin{align*}
&\begin{array}{c}
\text{Fig.}
\end{array}
\end{align*} \]

\[\begin{align*}
\text{Thm} \quad A(x) &= \sum_{i=1}^{n} a_i(c_i) \\
M(x) &= \sum_{i=1}^{n} b_i(c_i)
\end{align*} \]
Why is this true?

Two states are said to differ by a transposition if there is a pair of vertices v_1 and v_2 such that

$G - v_1, v_2 = G - v_2, v_1$.

There is a path P from v_1 to v_2. Following the knot so that $x(v_1)$ and $y(v_1)$ coincide, any two states can be connected by a transposition.

Kaufmcan

$\sum a(c_i) = \frac{1}{2} \cdot \frac{1}{2} = 0$

$\sum b(c_i) = 1$

$\sum a(c_i) = \frac{1}{2} \cdot \frac{1}{2} = 1$

$\sum b(c_i) = 2$

Exercise: $m = 1$

$[x(\mathcal{K}) = \frac{k}{4}, \frac{l}{4}] + p_x(q) \cdot p_y(p) = 0 - 1 + 2$
What does this mean for alternating knots?

If \(\Delta_k(t) = \sum_{i=-n}^{n} a_i t^i \), \(\sigma(k) \) its signature, then

\[
\widehat{\text{HF}}_{\text{c}}(S^3, k, j) = \begin{cases}
\mathbb{Z} & \text{if } (i, j) = (i + \frac{\sigma(k)}{2}, j), \\
0 & \text{otherwise}
\end{cases}
\]

\[\text{Corollary } t(k) = \frac{\sigma(k)}{2}\]

Visualization: Two options you'll see.

\[\widehat{\text{HF}}_{\text{c}}(S^3, 3, j)\]

\[\Delta_k(t) = t - 1 + t^{-1}\]

Q: How does this change if we go to the right-handed trefoil?

Q: What is the relationship between \(\Delta_k(t) \) and \(t(k) \)?
While we're on the topic:

Recall

- breadth \(D_k(t) \) \(\leq 2g(k) \)
- \(k \) fibred \(\Rightarrow D_k(t) \) monic

We have

\[\text{Thm} \quad \max S_j : \dim \overline{HF}^k (K, j) \neq 0 \quad \Rightarrow \quad g(K) = \] [Oesau-th-Szabo]

\[\text{Thm} \quad k \text{ fibred} (\Rightarrow) \]

Example

\[D_k(t) = 1 \]
Example 9.

What is $\hat{H}\mathbb{F}_2$? What is \mathbb{Z}?

What happens if I go to the mirror? Why?

More specifically, what is an Alexander grading?

A spinc structure on $S^3 - K$. Note that $\Sigma_2^c(\hat{S}^3 - K) \cong \text{Spin}^c(S^2 - K) \cong H^2(S^3 - K)$

$\sim \mathbb{Z}$

$A(x) = \frac{1}{2} \left< \chi(\Sigma_2^c(\hat{S}^3 - K)), [F] \right>$