
MTH 961: Suggested Exercises for Week 13

1. Let γn be the canonical n-plane bundle over Grn(R∞). Prove that γn ⊕ γn is orientable
and has w2n(γn ⊕ γn) 6= 0, hence e(γn ⊕ γn) 6= 0. If n is odd, show that 2e(γn ⊕ γn) = 0.

2. Consider the complex Grassmannian Grn(C∞). This has a canonical oriented 2n-plane
real bundle ξ2n (by regarding each complex n-dimensional subspace as an oriented real n-
dimensional subspace). Show the restriction of this bundle to the real subspace Grn(R∞)
is isomorphic to γn ⊕ γn, and conclude that e(ξ2n) 6= 0.

3. Let Sn be the unit sphere and A ⊂ Sn × Sn be the anti-diagonal, consisting of pairs
of antipodal unit vectors. Using stereographic projection, show that TSn is canonically
homeomorphic to Sn×Sn−A. Hence show that H∗(E,E0) ' H∗(Sn×Sn, Sn×Sn−∆) '
H∗(Sn × Sn, A) ⊂ H∗(Sn × Sn). Now, if n is even, show that e(TSn) is twice a generator
of Hn(Sn;Z). Conclude that TSn possesses no nontrivial subbundles.

[This is worked out in Hatcher’s Vector Bundles book; you are encouraged to go read
through it if you get stuck.]

4. Use last week’s exercises to give an example of a bundle with vanishing Euler class but no
nowhere zero section.

5. A construction of the Steenrod squares. Everything below is in Z2-coefficients. Notation
mostly chosen to match Hatcher’s Algebraic Topology Section 4L, although he does all the
other Steenrod prime powers at the same time as the squares.

In theory, a squaring operation would involve X ×X, but it’s actually easier to work with
X∧X, the smash product. This has a Z2 action generated by the map T (for transposition)
that interchanges the factors; the basepoint x0 in the smash product is a fixed point of the
action. Consider the Borel construction

ΓX = (X ∧X)×Z2 S
∞ := ((X ∧X)× S∞)/((x1, x2), z) ∼ (x2, x1,−z)).

There is a fibre bundle (X ∧X) ↪→ ΓX
p−→ RP∞. Furthermore, since x0 ∈ X ×X is a fixed

point, we have a basepoint section RP∞ ↪→ Y . We let the quotient of ΓX by this copy
of RP∞ be ΛX, which is now a basepointed space. If we restrict this entire construction
to S1, we get subspaces Γ1X and Λ1X. (Exercise: All of these constructions are natural,
and if X has the structure of a CW complex, so do ΓX, ΛX, Γ1X, and Λ1X.)

Now, there is an isomorphism

H∗(X ∧X)→ H∗(X)⊗H∗(X).

(Exercise: Convince yourself this is true, if necessary.) In particular, we can think about
α⊗α as an element of H2n(X ∧X). Our goal is to construct an element λ(α) ∈ H2n(ΛX)
that restricts to α ⊗ α on each fibre X ∧X ⊂ ΛX. By naturality, it suffices to construct
a suitable λ(ι) ∈ H2n(K(Z2, n)), where ι is the fundamental class in Hn(K(Z2, n)). Give
K(Z2, n) a CW structure with n-skeleton the n-sphere. For notation purposes, elements
α of Hn(X) correspond to maps α : X → K(Z2, n).

The main thing we need is that if T is the transposition map on K(Z2, n)∧K(Z2, n), the
there is a basepoint-preserving homotopy between the maps ι ⊗ ι and ι ⊗ ι ◦ T mapping
K(Z2, n)∧K(Z2, n)→ K(Z2, 2n). (Exercise: Construct this homotopy.) This is the same



thing as saying that T ∗(ι⊗ι) = ι⊗ι. The homotopy between these two maps induces a map
Γ1(K(Z2, n)) → K(Z2, 2n), which descends to a map Λ1K(Z2, n) → K(Z2, 2n). There is
no obstruction to exending the resulting map to λ : ΛK(Z2, n) → K(Z2, 2n). (Exercise:
Prove this.)The pullback of the canonical class in H2n(K(Z2, n)) along λ is the desired
class λ(ι). From this and naturality we get λ(α) for arbitrary α.

Finally, consider the inclusion RP∞ × X ↪→ Γ(X) coming from the diagonal map X ↪→
X ×X. We compose with the quotient map onto ΛX to get a map ∇ : RP∞ ×X → ΛX.
Then we have

∇∗ : H∗(ΛX)→ H∗(RP∞)⊗H∗(X)

For any α in Hn(X), ∇∗(λ(α)) =
∑n

i=0 h
n−i ⊗ Sqi(α); that is, the Steenrod squares are

whatever make this true.


