MTH 961: Suggested Exercises for Week 13

1. Let γ^{n} be the canonical n-plane bundle over $\operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right)$. Prove that $\gamma^{n} \oplus \gamma^{n}$ is orientable and has $w_{2 n}\left(\gamma^{n} \oplus \gamma^{n}\right) \neq 0$, hence $e\left(\gamma^{n} \oplus \gamma^{n}\right) \neq 0$. If n is odd, show that $2 e\left(\gamma^{n} \oplus \gamma^{n}\right)=0$.
2. Consider the complex Grassmannian $\mathrm{Gr}_{n}\left(\mathbb{C}^{\infty}\right)$. This has a canonical oriented $2 n$-plane real bundle $\xi^{2 n}$ (by regarding each complex n-dimensional subspace as an oriented real n dimensional subspace). Show the restriction of this bundle to the real subspace $\operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right)$ is isomorphic to $\gamma^{n} \oplus \gamma^{n}$, and conclude that $e\left(\xi^{2 n}\right) \neq 0$.
3. Let S^{n} be the unit sphere and $A \subset S^{n} \times S^{n}$ be the anti-diagonal, consisting of pairs of antipodal unit vectors. Using stereographic projection, show that $T S^{n}$ is canonically homeomorphic to $S^{n} \times S^{n}-A$. Hence show that $H^{*}\left(E, E_{0}\right) \simeq H^{*}\left(S^{n} \times S^{n}, S^{n} \times S^{n}-\Delta\right) \simeq$ $H^{*}\left(S^{n} \times S^{n}, A\right) \subset H^{*}\left(S^{n} \times S^{n}\right)$. Now, if n is even, show that $e\left(T S^{n}\right)$ is twice a generator of $H^{n}\left(S^{n} ; \mathbb{Z}\right)$. Conclude that $T S^{n}$ possesses no nontrivial subbundles.
[This is worked out in Hatcher's Vector Bundles book; you are encouraged to go read through it if you get stuck.]
4. Use last week's exercises to give an example of a bundle with vanishing Euler class but no nowhere zero section.
5. A construction of the Steenrod squares. Everything below is in \mathbb{Z}_{2}-coefficients. Notation mostly chosen to match Hatcher's Algebraic Topology Section 4L, although he does all the other Steenrod prime powers at the same time as the squares.
In theory, a squaring operation would involve $X \times X$, but it's actually easier to work with $X \wedge X$, the smash product. This has a \mathbb{Z}_{2} action generated by the map T (for transposition) that interchanges the factors; the basepoint x_{0} in the smash product is a fixed point of the action. Consider the Borel construction

$$
\left.\Gamma X=(X \wedge X) \times_{\mathbb{Z}_{2}} S^{\infty}:=\left((X \wedge X) \times S^{\infty}\right) /\left(\left(x_{1}, x_{2}\right), z\right) \sim\left(x_{2}, x_{1},-z\right)\right) .
$$

There is a fibre bundle $(X \wedge X) \hookrightarrow \Gamma X \xrightarrow{p} \mathbb{R P}^{\infty}$. Furthermore, since $x_{0} \in X \times X$ is a fixed point, we have a basepoint section $\mathbb{R P}^{\infty} \hookrightarrow Y$. We let the quotient of ΓX by this copy of $\mathbb{R} \mathbb{P}^{\infty}$ be ΛX, which is now a basepointed space. If we restrict this entire construction to S^{1}, we get subspaces $\Gamma^{1} X$ and $\Lambda^{1} X$. (Exercise: All of these constructions are natural, and if X has the structure of a CW complex, so do $\Gamma X, \Lambda X, \Gamma^{1} X$, and $\Lambda^{1} X$.)
Now, there is an isomorphism

$$
H^{*}(X \wedge X) \rightarrow H^{*}(X) \otimes H^{*}(X)
$$

(Exercise: Convince yourself this is true, if necessary.) In particular, we can think about $\alpha \otimes \alpha$ as an element of $H^{2 n}(X \wedge X)$. Our goal is to construct an element $\lambda(\alpha) \in H^{2 n}(\Lambda X)$ that restricts to $\alpha \otimes \alpha$ on each fibre $X \wedge X \subset \Lambda X$. By naturality, it suffices to construct a suitable $\lambda(\iota) \in H^{2 n}\left(K\left(\mathbb{Z}_{2}, n\right)\right)$, where ι is the fundamental class in $H^{n}\left(K\left(\mathbb{Z}_{2}, n\right)\right)$. Give $K\left(\mathbb{Z}_{2}, n\right)$ a CW structure with n-skeleton the n-sphere. For notation purposes, elements α of $H^{n}(X)$ correspond to maps $\alpha: X \rightarrow K\left(\mathbb{Z}_{2}, n\right)$.
The main thing we need is that if T is the transposition map on $K\left(\mathbb{Z}_{2}, n\right) \wedge K\left(\mathbb{Z}_{2}, n\right)$, the there is a basepoint-preserving homotopy between the maps $\iota \otimes \iota$ and $\iota \otimes \iota \circ T$ mapping $K\left(\mathbb{Z}_{2}, n\right) \wedge K\left(\mathbb{Z}_{2}, n\right) \rightarrow K\left(\mathbb{Z}_{2}, 2 n\right)$. (Exercise: Construct this homotopy.) This is the same
thing as saying that $T^{*}(\iota \otimes \iota)=\iota \otimes \iota$. The homotopy between these two maps induces a map $\Gamma^{1}\left(K\left(\mathbb{Z}_{2}, n\right)\right) \rightarrow K\left(\mathbb{Z}_{2}, 2 n\right)$, which descends to a map $\Lambda^{1} K\left(\mathbb{Z}_{2}, n\right) \rightarrow K\left(\mathbb{Z}_{2}, 2 n\right)$. There is no obstruction to exending the resulting map to $\lambda: \Lambda K\left(\mathbb{Z}_{2}, n\right) \rightarrow K\left(\mathbb{Z}_{2}, 2 n\right)$. (Exercise: Prove this.) The pullback of the canonical class in $H^{2 n}\left(K\left(\mathbb{Z}_{2}, n\right)\right)$ along λ is the desired class $\lambda(\iota)$. From this and naturality we get $\lambda(\alpha)$ for arbitrary α.
Finally, consider the inclusion $\mathbb{R} \mathbb{P}^{\infty} \times X \hookrightarrow \Gamma(X)$ coming from the diagonal map $X \hookrightarrow$ $X \times X$. We compose with the quotient map onto ΛX to get a map $\nabla: \mathbb{R} \mathbb{P}^{\infty} \times X \rightarrow \Lambda X$. Then we have

$$
\nabla^{*}: H^{*}(\Lambda X) \rightarrow H^{*}\left(\mathbb{R} \mathbb{P}^{\infty}\right) \otimes H^{*}(X)
$$

For any α in $H^{n}(X), \nabla^{*}(\lambda(\alpha))=\sum_{i=0}^{n} h^{n-i} \otimes S q^{i}(\alpha)$; that is, the Steenrod squares are whatever make this true.

