MTH 961: Suggested Exercises for Week 12

- 1. Show that the orthogonal complement of a subbundle of a vector bundle over a paracompact base is, up to isomorphism, independent of the choice of inner product.
- 2. A vector $E \to B$ is said to have finite type if there is some $E' \to B$ such that $E \oplus E' \simeq \epsilon^{\oplus n}$. In class we proved that every vector bundle over a compact base has finite type. Prove that the canonical line bundle over \mathbb{RP}^{∞} does not have finite type.
- 3. Prove that if $n + 1 = 2^r m$ with m odd, then there do not exist 2^r vector fields on \mathbb{RP}^n which are nowhere dependent.
- 4. Show that if \mathbb{RP}^n can be immersed in \mathbb{R}^{n+1} , then $n = 2^r 1$ or $n = 2^r 2$.
- 5. Verify that the construction of the Stiefel-Whitney classes given in class using the Leray-Hirsch Theorem satisfies the four axioms for these characteristic classes.
- 6. Show there is a three-dimensional real vector bundle over S^4 which is not the direct sum of a one-dimensional bundle and a two-dimensional bundle. [You're missing one fact you need, which is that an arbitrary two-dimensional vector bundle over S^4 can be given the structure of a complex line bundle. But otherwise you know enough to produce this example.]