Propn. For x cpt, y a metric space, this is the topology of uniform convergence induced by $d(f,g) = \sup_{x \in X} d(f(x), g(x))$.

(Otherwise, "topology of uniform convergence on compact sets.")

Propn. y metric, $f_i \in \text{Map}(x, y)$ converges $\iff f_i |_k$ converges uniformly on compact k.

Propn. y locally cpt,

1. $ev : X \times \text{Map}(x, y) \to y$ is cts

 $(x, f) \mapsto f(x)$

2. $F : X \times y \to z$ is cts $\iff \hat{F} : y \to \text{Map}(x, z)$ is cts.

 $y \mapsto F |_{X \times \hat{y} z}$

(Axioms of Cartesian closed categories)

PF. (a) Given $(x, f) \in X \times \text{Map}(x, y)$, $U \supset F(x)$ open on y, wts $ev^{-1}(U)$ contains a nbhd of (x, f). So cts $\iff F^{-1}(U)$ is an open nbhd of x. Also x is locally cpt, so there exists a cpt nbhd $K \ni x$ w/ $x \in \text{Int}(K)$.

Claim. $\text{Int}(K) \times M(K, U) \subseteq ev^{-1}(U)$.
(1) Assume \(\hat{F} \) is cts. \(F: X \times Y \xrightarrow{id_{\hat{F}}} X \times Map(Y, Z) \xrightarrow{ev} Z \) is cts.

(2) Assume \(F \) is cts \(\Rightarrow \) see \(\hat{F} \) is cts, need to show \(\hat{F}^{-1}(M(K, U)) \) is open. Let \(y \in \hat{F}^{-1}(M(K, U)) \).

\[
F^{-1}(U) = K \times \varepsilon_y B
\]

So \(V \times W \subseteq F^{-1}(U) \) s.t \(\bigcup V \subseteq X \) open. (Since \(K \) is open, can take a finite subcover of \(K \times \varepsilon_y B \) by product nbhds. Take unions for \(V \) and intersections for \(W \).) Now \(y \in W \subseteq \hat{F}^{-1}(M(K, U)) \).

\(\text{Prop} \quad Map(X \times Y, Z) \rightarrow Map(Y, Map(X, Z)) \) is a homeomorphism if \(Y \) is Hausdorff and \(X \) is locally cpt and Hausdorff.
Now, recall any map $X \xrightarrow{F} Y$ is equivalent to an inclusion,

$$\begin{array}{ccc}
X & \xrightarrow{F} & Y \\
\downarrow & & \downarrow \gamma \\
\mathbb{M} & \xleftarrow{} & \end{array}$$

Today Any map is equivalent to a fibration.

How? $E_f = \{ (x, t) : f(x) = y(t) \} \subseteq X \times \text{MAP}(I, Y)$

$x \in X$

$y : [0, 1] \rightarrow Y$

What's the point?

- Def F retracts to X by contracting to a constant path

- Fibration over Y $\tilde{f} : E_f \rightarrow (x, y)$

Claim This is a fibration and equivalent to $f : X \rightarrow Y$

PF Let $c : x \leftrightarrow E_f$. Let $H : I \times E_f \rightarrow E_f$

$x \mapsto (x, c_x)$

$(t, (x, y)) \mapsto (x, y \circ [0, 1-t])$

Check H is cts? Projection onto X clearly is. Need to check $(I \times E_f) \rightarrow Y^I$. This is equivalent to

$(t, (x, y)) \mapsto y \circ [0, 1-t]$
\[(I \times E_F) \times I \rightarrow Y\] is cts, which is q

\[(t, x, s) \mapsto y_{[0, 1-t]}(s) = y(s(1-t))\]

restriction of \[I \times (x \times y^2) \times I \rightarrow Y\] which is cts because evaluation is cts. So \(H\) is a def retract of \(E_F\) onto \(X\), and it takes \(F\) to \(F\).

Thm (Milnor) If \(X, Y\) are CW cpxes, \(F: X \rightarrow Y\), then \(E_F\) is htpy equivalent to a CW cpx.

Finally, to see \(E_F \rightarrow Y\) is a fibration: Let

\[
\begin{array}{ccc}
A & \xrightarrow{\tilde{g}_0} & E_F \\
\downarrow & & \downarrow \tilde{F} \\
A \times I & \longrightarrow & Y \\
\end{array}
\]

Let \(\tilde{g}_0(a) = (h(a), \gamma_0(a))\). Set

\[
\tilde{g}_e = (h(a), \gamma_0(a), g_{[0, e]}(a)).
\]

Reparametrize appropriately

Check this is cts

\[A \times I \rightarrow E_F \subseteq X \times y^2\] is cts \(\Leftrightarrow\) \(A \times I \times I \rightarrow Y\) is cts

\[(a, t) \mapsto \gamma_0(a), \gamma_{[0, e]}(a)\]

DeF The homotopy fibre of \(F: X \rightarrow Y\) is the fibre of \(E_F \rightarrow Y\), i.e., \(F = \tilde{F}^{-1}(y_0) = \tilde{\gamma}(x, y): x \in X, \gamma(0) = F(x), \gamma(1) = y_0, \tilde{\gamma}^1\).
Special cases

1. \(i : A \hookrightarrow X \) an inclusion; \(F_i = \sum_{\gamma : \gamma(0) \in A} \gamma(1) = x_0 \)

Prop. \(\pi_k(F_i) \cong \pi_{k+1}(x_0, A) \)

PF. Same long exact sequence.

Why? Basepoint of \(\pi_1(F_i) \) is a constant path at \(x_0 \in A \subseteq X \).

Element of \(\pi_1(F_i) \) is a map \(I_0 \rightarrow \text{Map}(I_0, X) \).

\[I_0 = I \rightarrow X \]

Path starting at \(x_0 \).

What if \(A \) is a point? \(\pi_{k+1}(x_0, A) = \pi_k(F_i) \)

Def. The based loop space of \(X \), \(\Omega X \), is \(\sum_{\gamma : \gamma(0) = x_0} \gamma \in \text{Map}(I, X) \)

We see \(\pi_k(\Omega X) = \pi_{k+1}(x_0) \).
Indeed \[\Omega X \longrightarrow \text{MAP}(\Sigma_j X) = \mathbb{P}X \]

\[
\downarrow
\]

\[
\downarrow
\]

Examples

\[
\Omega \mathbb{K}(G,n) \cong K(G,n-1)
\]

\[
\Omega \mathbb{O} \mathbb{P} \cong S^1
\]

\[
\Omega \mathbb{H} \mathbb{P} \cong S^3
\]

Iterating:

Any \(K(G,n) \) is

an infinite loop space

Compare suspension \(\pi_{k+1}(S X) = \pi_k(X) \) for \(k < 2n+1 \) when \(X \) is \(n \)-connected.

Suspension and loop space are adjoint functors.

Adjoint Functors

\(\mathcal{C}, \mathcal{D} \) categories. Functors \(F : \mathcal{C} \rightarrow \mathcal{D}, G : \mathcal{D} \rightarrow \mathcal{C} \) are adjoint

if for \(x \in \mathcal{C}, y \in \mathcal{D} \) \(\text{Hom}(Fx, y) \) naturally isomorphic to \(\text{Hom}(x, Gy) \).

Examples

\(\text{Free} \rightarrow \text{Group} \)

\(\text{Forget} \rightarrow \text{Set} \)

\(\text{Hom}(F_G, G) \cong \text{Hom}(S, \text{Forget } G) \)
\[
\text{Propn. For any } x \text{ and } y, \langle \Sigma x, y \rangle \cong \langle x, \Omega y \rangle \text{ is a group, and } \\
\langle \Sigma^2 x, y \rangle \cong \langle x, \Omega^2 y \rangle \text{ is an abelian group.}
\]

Proof: \langle \Sigma x, y \rangle \text{ are maps } x \times I \to y \text{ taking real subset to basepoint.}

Stack maps! If we have the double suspension, we look at maps \(x \times I \times I \to y \) and we can do the same htpy as we did for \(\pi_2 \) of a space.