Lecture 12

Beginning Spectral Sequences

Motivating question: What, if anything, can we say about the homology of the spaces in a fibration \(F \longrightarrow E \rightarrow B \)?

General Remarks

1. Generalization of Exact Sequences
2. Arise naturally lots of places
 - Kunneth Theorem for nontrivial fibrations
 \(\Rightarrow \) Serre spectral sequence
 - Universal coefficient theorem for rings other than \(\mathbb{Z} \)
 \(\Rightarrow \) U.C. spectral sequence
 - Cellular cohomology for generalized (co)homology theories
 \(\Rightarrow \) Atiyah-Hirzebruch spectral sequence
 - Mayer-Vietoris for more than two sets
 \(\Rightarrow \) M-V spectral sequence
References

- Hatcher Spectral Sequences book
- Bott & Tu
- McCleary User's Guide to Spectral Sequences
- Chow "You could have invented Spectral Sequences"

Today chain complexes are over a field k.

Def. A (first quadrant) spectral sequence of homological type consists of k-vector spaces $E^n_{p,q}$ for $n \in \mathbb{N}, p,q \in \mathbb{Z}$ and maps

$$d^r_{p,q}: E^r_{p,q} \rightarrow E^r_{p-r, q+r-1}$$

such that

- $d^r_{p-r, q+r-1} \circ d^r_{p,q} = 0$

- $E^{r+1}_{p,q} = \ker(d^r_{p,q}) / \text{im}(d^r_{p-r, q+r-1})$

- $E^n_{p,q} = 0$ if $p < 0$ or $q < 0$ (first quadrant condition).

Interpretation This is book with a grid of vector spaces on each page. The number r is the page number.
Page $r = 0$

- Note that (P_{q}) is just a Cartesian coordinate

- $d_{P_{q}}^{0} : E_{0}^{0} \rightarrow E_{P_{q-1}}^{0}$

Page $r = 1$

- $d_{P_{q}}^{1} : E_{1}^{1} \rightarrow E_{P_{q-1}}^{1}$
- Each $E_{P_{q-1}}^{1}$ is the homology of the previous page, e.g.

\[E_{01}^{1} = \ker (d_{01}^{0}) / \text{im} (d_{22}^{0}) \]

Page $r = 2$

- $d_{P_{q}}^{2} : E_{2}^{2} \rightarrow E_{P_{q-2}, q+1}^{2}$
How to remember this? Think of the entire thing as graded along diagonals. Differentials always lower grading by 1.

Defn. The limit of a spectral sequence \(E^r_{p,q} \) is defined as follows: For each \((p, q) \in \mathbb{N} \times \mathbb{N} \)

\[
E_{p,q}^\infty = E_{p+1,q-1}^\infty = E_{p+2,q-2}^\infty = \ldots \quad \text{because of the first quadrant condition,}
\]

call this vector space \(E_{p,q}^\infty \). Let \(E_{n=0}^\infty = \bigoplus_{p+q=n} E_{p,q}^\infty \). Then the spectral sequence converges to \(\bigoplus_{n=0} E_n^\infty \).

Defn. A first quadrant spectral sequence of cohomological type is some \((E_{r}, \partial_{r}, d_{r}, p, q)\) s.t. \(d_{r} \circ \partial_{r} = 0 \), i.e., with same conditions as previously.

Warning. The \(r \)th page determines the modules on the \((r+1)\)st page, but not the differentials.
We're going to talk about how spectral sequences arise in general, but it's worth getting the first major example into play.

Topology Application: Serre Spectral Sequence

Thm (Serre) Let $F \to E$ be a Fibration. Assume $\pi_1(\emptyset)$ acts trivially on $H^*(F; k)$. (Often satisfied by just having \emptyset be simply connected). Then there is a spectral sequence with $E^2_{p,q} = H^p(\emptyset; H^q(F; k)) \Rightarrow H^*_p(\emptyset; k) \otimes H^*_q(F; k)$ converging to $H^*_E(F; k)$.

This step only if k is a field.

Something slightly more complicated is true for rings.

Similarly, if a spectral sequence with $E^2_{p,q} = H^p(\emptyset; H^q(F; k)) \Rightarrow H^*_p(\emptyset; k) \otimes H^*_q(F; k)$ converging to $H^*_E(F; k)$.

Compare to the **Kunneth Thm** $H^*_E(F \times \emptyset; k) \cong H^*_E(F; k) \otimes H^*_E(\emptyset; k)$.

This is the claim that the spectral sequence "collapses" (i.e., stops changing) at E^2.

Furthermore we see $H^*_E(Fiber \; Fibration)$ is no larger than $H^*_E(Corresponding \; Product)$.
Example: $H^*(\mathbb{C}P^\infty)$

Path-loop fibration $S^1 \simeq \Omega \mathbb{C}P^\infty \rightarrow P\mathbb{C}P^\infty$

We know the s.s. converges to the homology of a contractible space.

With k a field, the homology of S^1 terms just vanish in the tensor product, and this looks like:

$H^0(\mathbb{C}P^\infty) \rightarrow H_1(\mathbb{C}P^\infty) \rightarrow H_2(\mathbb{C}P^\infty)$
So we must have:
\[
\begin{align*}
H_0 (\Omega \mathbb{P}^\infty; 1k) &= 1k \\
H_1 (\Omega \mathbb{P}^\infty; 1k) &= 0 \\
H_2 (\Omega \mathbb{P}^\infty; 1k) &= 1k \\
\vdots
\end{align*}
\]

by examining the diagram.

Example 2: \(H_+ (\Omega \mathbb{S}^2) \)

\(\Omega \mathbb{S}^2 \longrightarrow \mathbb{P} \mathbb{S}^2 \)

\(S^2 \) is simply connected

\[E^2\text{-page} \]

\[\begin{array}{cccc}
0 & H_0 (\Omega \mathbb{S}^2) \otimes H_0 (S^2) & H_1 (\Omega \mathbb{S}^2) \otimes H_0 (S^2) & H_2 (\Omega \mathbb{S}^2) \\
0 & H_0 (\Omega \mathbb{S}^2) \otimes H_1 (S^2) & H_1 (\Omega \mathbb{S}^2) \otimes H_1 (S^2) & H_2 (\Omega \mathbb{S}^2) \\
0 & H_0 (\Omega \mathbb{S}^2) \otimes H_0 (S^2) & H_1 (\Omega \mathbb{S}^2) \otimes H_0 (S^2) & H_1 (\Omega \mathbb{S}^2) \otimes H_0 (S^2) \\
\end{array} \]
\[\begin{cases}
H_0(\Omega S^2) = \mathbb{Z} \\
H_1(\Omega S^2) = 0 \\
H_2(\Omega S^2) = 0 \\
H_3(\Omega S^2) = \mathbb{Z} \\
H_{n+2}(\Omega S^2) = H_n(\Omega S^2)
\end{cases}\]

Exercise \(H_+ (\Omega S^n) \)

Remark This result is also accessible via the Morse theory we waved our hands at earlier.

One more example Fast proof of Hurewicz

Thm Let \(x \) be an \((n-1)\)-connected CW cpx, \(n \geq 2 \), then \(\pi_n (x) = H_n(x) \).

PF First assume we know the \(n=2 \) case.

Lemma IF \(x \) is \(m \)-connected then \(H_n(x) = 0 \) for \(0 \leq m \leq n \).

PF A model for \(x \) w/ no cells in dimns \(\leq m+1 \) except for a single zero cell.

Now consider \(\Sigma x \rightarrow PX \)

\[\begin{array}{ccc}
\Sigma x & \rightarrow & PX \\
\downarrow & & \\
X & \leftarrow & \text{simply-connected}
\end{array}\]

We have a Serre spectral sequence

I want to do this one in \(\mathbb{Z} \)-coefficients.
Since Ωx is $(n-2)$ connected, get a large box of zeroes.

Preserved until the E^n page, when we have

$$H_n(x) \xrightarrow{\partial} H_{n-1}(\Omega x),$$

So $d_n : H_n(x) \xrightarrow{\partial} H_{n-1}(\Omega x) \simeq \pi_{n-1}(\Omega x) \simeq \pi_n(x)$

Inductive assumption

For $n=2$ case: For x ctd, $H_2(x) \cong \pi_2(x)/[x, x]$, but $\pi_1(\Omega x)$ is abelian.
Continuing this argument one also notes

\[H_{n+t}(x) \cong H_{n+t-1}(\Omega^2 x) \text{ for } 0 \leq t \leq n-2. \]

Indeed, Serre's mod-c Hurewicz Thm: \textit{If } \(H_* (\omega) \) \textit{ is } \(2^n \)-torsion then so is \(H_* (x) \) and vice versa.