Homework 9 Solutions MTH 327H

- 4. M = (1, 2) is connected and $S = \mathbb{Q}$ is not, so no such surjection exists.
 - $f: (1,2) \rightarrow [0,1]$ given by

$$f(x) = \begin{cases} 0 & x < \frac{5}{4} \\ 2x - \frac{5}{2} & \frac{5}{4} \leqslant x \leqslant \frac{7}{4} \\ 1 & x > \frac{7}{4} \end{cases}$$

is a suitable continuous surjection.

- M = [0, 1] is compact and S = [1, 2) is not, so no such surjection exists.
- M = [0, 1] is compact. I claim $S = \mathcal{C}([0, 1], \mathbb{R})$ is not. For consider the sequence of functions $f_n(x) = n$ in S. This sequence (f_n) has no convergent subsequence in S, since its elements become arbitrarily far away from any function in S. So since M is compact and S is not, we see that no continuous surjection from M to S exists.
- The function $f(x) = (\cos x, \sin x)$ is a satisfactory continuous surjection.
- Suppose that f: (1,2) ∪ (3,4) → {0,1,2} is continuous. Then f((1,2)) is connected, and therefore f must be constant on (1,2), mapping all of (1,2) to 0, 1, or 2. Similarly f must be constant on (3,4). Ergo f cannot hit all three elements of {0,1,2}, and no continuous surjection from M to S exists.
- $f(x,y) = \arctan(\pi x \frac{\pi}{2})$ is a suitable continuous surjection from $(0,1) \times (0,1)$ to \mathbb{R} .
- M is the unit circle on the complex plane and is in particular a compact set; S is not closed and therefore not compact. So no continuous surjection from M to S exists.