Homework 8 Solutions MTH 327H

- 4. Suppose that $[0,1] = \bigcup_{i=1}^{\infty} A_i$, and each A_i is closed. Then consider $A_i^c = U_i$, which is open. If every A_i has empty interior, we see that U_i is dense, so by the Baire Category Theorem, $\bigcap_{i=1}^{\infty} U_i$ is dense in \mathbb{R} . But this is nonsense, since $[0,1] \cap (\bigcap_{i=1}^{\infty} U_i)$ is empty. Ergo some A_i has nonempty interior.
 - Observe that $\mathbb{R} \mathbb{Q}$ may be written as the intersection of the countably many open dense subsets $U_q = \mathbb{R} - \{q\}$ for $q \in \mathbb{Q}$. Suppose that \mathbb{Q} may be written as the intersection of countably many open sets V_i , each of which is necessarily dense in \mathbb{R} since it contains \mathbb{Q} . Then the intersection of the countably many open dense sets in the collection $\{U_q : q \in \mathbb{Q}\} \cup \{V_i : i \in \mathbb{N} - \{0\}\}$ is empty. This is impossible by the Baire Category Theorem. Hence \mathbb{Q} cannot be written as the intersection of countably many open sets.
- 5. We see that s(0) converges trivially. For any other $x \in [-1, 1]$, s(x) is an alternating series. The terms $\frac{|x|^{2n+1}}{2n+1}$ decrease monotonically to 0, so s(x) converges by the Alternating Series Test.

If we assume we can differentiate s(x) term by term on (-1, 1) (which is a big assumption!) we see that

$$s'(x) = 1 - x^{2} + x^{4} - x^{6} + \dots$$
$$= \sum_{n=0}^{\infty} (-x^{2})^{n}$$
$$= \frac{1}{1 + x^{2}}$$

This suggests that $s(x) = \arctan x$. If we assume this expansion is valid on [-1, 1] (again, big assumption), we get that

$$\frac{\pi}{4} = \arctan(1) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

• Let $b_i = |a_i|$ and recall that (b_i) is a monotonically decreasing sequence with $b_i \to 0$. Then let s_i be the partial sums of (a_i) , so that we have

$$s_2 < s_4 < s_6 \dots < \frac{\pi}{4} < \dots s_5 < s_3 < s_1$$

Let $t_i = \frac{s_i + s_{i+1}}{2} = s_i + \frac{a_{i+1}}{2}$. We observe that the limit of the sequence (t_i) is $\lim(s_i + \frac{a_{i+1}}{2}) = \frac{\pi}{4} + 0$. Now we look at the even-index terms in this sequence. For any *i*, we see that

$$t_{2i+2} = s_{2i+2} + \frac{a_{2i+3}}{2} = s_{2i+2} + \frac{b_{2i+3}}{2} \ge s_{2i} + \frac{b_{2i+1}}{2}$$

So the even partial sums form an increasing sequence $t_2 < t_4 < t_6 < \ldots$; since the limit of this sequence is $\frac{\pi}{4}$, each even partial sum must in fact be less than $\frac{\pi}{4}$, so we have $t_2 < t_4 < t_6 < \cdots < \frac{\pi}{4}$. Similarly we see that the odd partial sums are a decreasing sequence, giving us

$$t_2 < t_4 < t_6 \dots < \frac{\pi}{4} < \dots t_5 < t_3 < t_1$$

The only fact we used about the (s_i) to reach this conclusion is that $s_i - s_{i+1}$ is an alternating sequences which decreases montonically in absolute value to zero; as this is plainly still true of the t_i , it follows that we may iterate this argument.