## Homework 8 Solutions

## MTH 327H

4.     - Suppose that $[0,1]=\bigcup_{i=1}^{\infty} A_{i}$, and each $A_{i}$ is closed. Then consider $A_{i}^{c}=U_{i}$, which is open. If every $A_{i}$ has empty interior, we see that $U_{i}$ is dense, so by the Baire Category Theorem, $\bigcap_{i=1}^{\infty} U_{i}$ is dense in $\mathbb{R}$. But this is nonsense, since $[0,1] \cap\left(\bigcap_{i=1}^{\infty} U_{i}\right)$ is empty. Ergo some $A_{i}$ has nonempty interior.

- Observe that $\mathbb{R}-\mathbb{Q}$ may be written as the intersection of the countably many open dense subsets $U_{q}=\mathbb{R}-\{q\}$ for $q \in \mathbb{Q}$. Suppose that $\mathbb{Q}$ may be written as the intersection of countably many open sets $V_{i}$, each of which is necessarily dense in $\mathbb{R}$ since it contains $\mathbb{Q}$. Then the intersection of the countably many open dense sets in the collection $\left\{U_{q}: q \in \mathbb{Q}\right\} \cup\left\{V_{i}: i \in \mathbb{N}-\{0\}\right\}$ is empty. This is impossible by the Baire Category Theorem. Hence $\mathbb{Q}$ cannot be written as the intersection of countably many open sets.

5. We see that $s(0)$ converges trivially. For any other $x \in[-1,1], s(x)$ is an alternating series. The terms $\frac{|x|^{2 n+1}}{2 n+1}$ decrease monotonically to 0 , so $s(x)$ converges by the Alternating Series Test.
If we assume we can differentiate $s(x)$ term by term on $(-1,1)$ (which is a big assumption!) we see that

$$
\begin{aligned}
s^{\prime}(x) & =1-x^{2}+x^{4}-x^{6}+\ldots \\
& =\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n} \\
& =\frac{1}{1+x^{2}}
\end{aligned}
$$

This suggests that $s(x)=\arctan x$. If we assume this expansion is valid on $[-1,1]$ (again, big assumption), we get that

$$
\frac{\pi}{4}=\arctan (1)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots
$$

- Let $b_{i}=\left|a_{i}\right|$ and recall that $\left(b_{i}\right)$ is a monotonically decreasing sequence with $b_{i} \rightarrow 0$. Then let $s_{i}$ be the partial sums of $\left(a_{i}\right)$, so that we have

$$
s_{2}<s_{4}<s_{6} \cdots<\frac{\pi}{4}<\ldots s_{5}<s_{3}<s_{1}
$$

Let $t_{i}=\frac{s_{i}+s_{i+1}}{2}=s_{i}+\frac{a_{i+1}}{2}$. We observe that the limit of the sequence $\left(t_{i}\right)$ is $\lim \left(s_{i}+\frac{a_{i+1}}{2}\right)=\frac{\pi}{4}+0$. Now we look at the even-index terms in this sequence. For any $i$, we see that

$$
t_{2 i+2}=s_{2 i+2}+\frac{a_{2 i+3}}{2}=s_{2 i+2}+\frac{b_{2 i+3}}{2} \geqslant s_{2 i}+\frac{b_{2 i+1}}{2} .
$$

So the even partial sums form an increasing sequence $t_{2}<t_{4}<t_{6}<\ldots$; since the limit of this sequence is $\frac{\pi}{4}$, each even partial sum must in fact be less than $\frac{\pi}{4}$, so we have $t_{2}<t_{4}<t_{6}<\cdots<\frac{\pi}{4}$. Similarly we see that the odd partial sums are a decreasing sequence, giving us

$$
t_{2}<t_{4}<t_{6} \cdots<\frac{\pi}{4}<\ldots t_{5}<t_{3}<t_{1}
$$

The only fact we used about the $\left(s_{i}\right)$ to reach this conclusion is that $s_{i}-s_{i+1}$ is an alternating sequences which decreases montonically in absolute value to zero; as this is plainly still true of the $t_{i}$, it follows that we may iterate this argument.

