Homework 7 Solutions

MTH 327H
4. Let $\left\{s_{n}\right\}$ be a sequence of real numbers, and let $S \subset \mathbb{R} \cup\{ \pm \infty\}$ be the set of subsequential limits of $\left\{s_{n}\right\}$. Let $E_{N}=\left\{s_{n}: n \geqslant N\right\}$.
We check the statement for the two definitions of limsup; liminf is similar. Suppose that $t=\lim _{N \rightarrow \infty} \sup E_{N}$. Then we claim t is exactly $\sup S$.

First we do the case where t is a real number. Recall that to show t is a subsequential limit of $\left\{s_{n}\right\}$, it suffices to show that any neighborhood $(t-\epsilon, t+\epsilon)$ of t contains s_{n} for infinitely many n. Now, for any $\epsilon>0$ we see that there exists N such that $N_{0} \geqslant N$ implies that $\sup \left\{s_{n}: N_{0} \geqslant N\right\}<t+\epsilon$, implying in particular that $\left\{\sup s_{n}\right.$: $\left.N_{0} \geqslant N_{0}\right\}<t+\epsilon$. Indeed we see that for $n \geqslant N_{0}, s_{n}<t+\epsilon$. Furthermore, suppose that there are only finitely many m_{1}, \ldots, m_{k} for which $s_{m_{i}}>t-\epsilon$. Then for $n>N_{1}=\max \left\{m_{1}, \ldots, m_{k}\right\}$, we have that $s_{n}<t+\epsilon$, implying that for $N_{0}>N_{1}$, $\sup \left\{s_{n}: n \geqslant N_{0}\right\} \leqslant t-\epsilon$, contradicting $\sup E_{N} \rightarrow t$. So there must be infinitely many n for which s_{n} is in $(t-\epsilon, t+\epsilon)$. We conclude that $t \in S$.
We now wish to show that $t=\max S$. But let r be another subsequential limit, say of the subsequence $\left\{s_{n_{k}}\right\}$. Then $r=\lim s_{n_{k}}=\limsup s_{n_{k}}=\lim \sup \left\{s_{n_{k}}: n_{k} \geqslant N\right\} \leqslant$ $\lim \sup \left\{s_{n}: n \geqslant N\right\}=t$. So t is $\max S$.

Now let $t=-\infty$. This implies that for every $m<0$, there is an N such that $N_{0} \geqslant N$ implies that $\sup \left\{s_{n}: n \geqslant N_{0}\right\}<m$. In particular for $n \geqslant N, s_{n}<M$. So $s_{n} \rightarrow-\infty$ has exactly one subsequential limit, namely t.

Now let $t=\infty$. Certainly if $t \in S$ then $t=\sup S$. Now pick N_{1} such that for $N_{0} \geqslant N_{1}$, $\sup \left\{s_{n}: n \geqslant N_{0}\right\}>1$. In particular $\sup \left\{s_{n}: n \geqslant N_{1}\right\}>1$, implying that there exists an $s_{n_{1}}>1$ in the set. Now pick $N_{2}>n_{1}$ such that $\sup \left\{s_{n}: n \geqslant N_{2}\right\}>2$, and pick $s_{n_{2}}$ in this set. Iterate to get a subsequence $\left\{s_{n_{k}}\right\}$ of $\left\{s_{n}\right\}$ converging to ∞.
5. Let $s_{n}=1+\frac{1}{2}+\cdots+\frac{1}{2^{n}}$. The sequence $\left(s_{n}\right)$ is increasing bounded above; it's not hard to satisfy myself inductively that $s_{n}<2$. So $\left\{s_{n}\right\}$ converges. Therefore, by Theorem 3.3 , the sequence $\left\{2 s_{n}-s_{n}\right\}$ converges to $2 s-s=s$. But $2 s_{n}-s_{n}=2$ for any n. So $s=2$.
In the case of $t_{n}=1+2+\cdots 2^{n}$, Theorem 3.3 does not apply.

