Homework 4 Solutions

MTH 327H

4．Suppose that $⿴ 囗 十$ is an order on \mathbb{Q} that gives \mathbb{Q} the structure of an ordered field．By Proposition 1．18（d）， $0 ⿴ 囗 十$ 1．Adding 1 to both sides preserves the ordering by Definition $1.17(\mathrm{i})$ ，so $1 ⿴ 2$ ．Iterating this process，we see that $n-1 \square n$ ．Since $⿴$ is transitive we have now ordered the naturals：

0 田1田2日 $3 \ldots$
By Proposition 1．18（a），taking additive inverses reverses ordering，so we know the entire ordering of the integers：

In particular，we conclude that if x and y are integers，$x \boxplus y$ if and only if $x<y$ ．
Now suppose that we have two rationals $r<s$ ．We may write $r=\frac{a}{b}, s=\frac{c}{b}$ with $b>0$ after possibly taking common denominators if necessary．Then $r<s \Leftrightarrow a<c \Leftrightarrow$
 by Proposition 1．18（e）and multiplication by positives preserves order by Proposition 1．18（b）．We conclude that $⿴ 囗 十$

5．Suppose that \mathbb{C} can be given the structure of an ordered field．Then since squares are positive in any ordered field， $0<1$ and $0<-1=i^{2}$ ．But taking additive inverses reverse order in any ordered field，so this is impossible．
Now suppose that $\mathbb{Z} / p \mathbb{Z}$ can be given the structure of an ordered field．Then［0］$<[1]$ ， since this is true in any ordered field．But then adding［1］to both sides shows that $[1]<[2]$ ，and iterating this process and applying transitivity we see that $[0]<[1]<$ $\cdots<[p-2]<[p-1]$ ．In particular［0］$<[p-1]$ ．But adding［1］to both sides of $[p-2]<[p-1]$ shows that $[p-1]<[p]=[0]$ ．This is a contradiction．So $\mathbb{Z} / p \mathbb{Z}$ cannot be given the structure of an ordered field．

6．（a）Suppose that $a_{1}, \cdots a_{n-1}$ have been chosen as specified，and that a_{n} is the largest integer such that

$$
a_{0}+\frac{a_{1}}{k}+\frac{a_{2}}{k^{2}}+\cdots+\frac{a_{n}}{k^{n}} \leqslant x
$$

First suppose that $a_{n}<0$ ．This implies that

$$
a_{0}+\frac{a_{1}}{k}+\frac{a_{2}}{k^{2}}+\cdots+\frac{0}{k^{n}}>x
$$

which is impossible by construction of a_{n-1} ．So $a_{n} \geqslant 0$ ．Now suppose $a_{n} \geqslant k$ ．Then $\frac{a_{n}}{k^{n}}>\frac{k}{k^{n}}=\frac{1}{k^{n-1}}$ ．This implies that

$$
a_{0}+\frac{a_{1}}{k}+\frac{a_{2}}{k^{2}}+\cdots+\frac{a_{n-1}}{k^{n-1}}+\frac{1}{k^{n-1}} \leqslant x
$$

so in particular

$$
a_{0}+\frac{a_{1}}{k}+\frac{a_{2}}{k^{2}}+\cdots+\frac{a_{n-1}+1}{k^{n-1}} \leqslant x
$$

which is impossible, since a_{n-1} was chosen to be the largest integer such that the equation above was satisfied. So $a_{n} \leqslant k-1$. Hence $0 \leqslant a_{n} \leqslant k-1$ for $i \geqslant 1$.
(b) First, x is clearly an upper bound for $\left\{r_{0}, r_{1}, \ldots\right\}$. Suppose $y<x$. Then we may choose M such that $x-y>\frac{1}{k^{M}}$. Now consider

$$
r_{M}=a_{0}+\frac{a_{1}}{k}+\frac{a_{2}}{k^{2}}+\cdots+\frac{a_{M}}{k^{M}} \leqslant x
$$

Since a_{M} is the largest integer for the inequality above is true, we see that $x-r_{M} \leqslant \frac{1}{k^{M}}$. This implies that $r_{M}>y$. So y is not an upper bound for $\left\{r_{0}, r_{1}, \cdots\right\}$. Therefore since no number less than x is an upper bound for $\left\{r_{0}, r_{1}, \cdots\right\}$, it follows that $x=$ $\sup \left\{r_{0}, r_{1}, \cdots\right\}$.
(c) Let $S=\left\{r_{0}, r_{1}, \ldots\right\}$ and $S^{\prime}=\left\{r_{0}^{\prime}, r_{1}^{\prime}, \ldots\right\}$. Let $x=\sup S=\sup S^{\prime}$. Suppose that $a_{0} \neq a_{0}^{\prime}$. Without loss of generality we may assume $a_{0}<a_{0}^{\prime}$. We observe that

$$
\begin{aligned}
r_{n} & =a_{0}+\frac{a_{1}}{k}+\frac{a_{2}}{k^{2}}+\cdots+\frac{a_{n}}{k^{n}} \\
& \leqslant a_{0}+\frac{k-1}{k}+\cdots+\frac{k-1}{k^{n-1}}+\frac{k-1}{k^{n}} \\
& <a_{0}+\frac{k-1}{k}+\cdots+\frac{k-1}{k^{n-1}}+\frac{k}{k^{n}} \\
& =a_{0}+\frac{k-1}{k}+\cdots+\frac{k-1}{k^{n-2}}+\frac{1}{k^{n-1}} \\
& =a_{0}+1
\end{aligned}
$$

So in particular $a_{0}+1$ is an upper bound for $\left\{r_{0}, r_{1}, \cdots\right\}$, implying that $x \leqslant a_{0}+1$. Since $r_{0}^{\prime}=a_{0}^{\prime}$ is an element of S^{\prime} and $x=\sup S^{\prime}$, we see that $a_{0}^{\prime}=r_{0}^{\prime} \leqslant x \leqslant a_{0}+1$. Since we are assuming $a_{0} \neq a_{0}^{\prime}$, we must have $a_{0}^{\prime}=a_{0}+1$. So in fact $a_{0}+1=a_{0}^{\prime} \leqslant x \leqslant a_{0}+1$, implying that $x=a_{0}^{\prime}=a_{0}+1$.
However, recall that by assumption, there is some $i \geqslant 1$ such that $a_{i}<k-1$. Choose the smallest such i. Then we have

$$
r_{i}=a_{0}+\frac{k-1}{k}+\frac{k-1}{k^{2}}+\cdots+\frac{k-1}{k^{i-1}}+\frac{a_{i}}{k^{i}}
$$

By the same argument as above, for $n>i$,

$$
\begin{aligned}
r_{n} & <a_{0}+\frac{k-1}{k}+\frac{k-1}{k^{2}}+\cdots+\frac{k-1}{k^{i-1}}+\frac{a_{i}}{k^{i}}+\frac{1}{k^{i}} \\
& =a_{0}+\frac{k-1}{k}+\frac{k-1}{k^{2}}+\cdots+\frac{k-1}{k^{i-1}}+\frac{a_{i}+1}{k^{i}} \\
& <a_{0}+1-\frac{k-\left(a_{i}+1\right)}{k^{i}}
\end{aligned}
$$

This implies that $x=\sup S$ has $x \leqslant a_{0}+1-\frac{k-\left(a_{i}+1\right)}{k^{i}}<a_{0}+1$. This is a contradiction. So in fact $a_{0}=a_{0}+1$. Repeating the argument proves that $a_{i}=a_{i}^{\prime}$.

