MTH 327H: Homework 4

Due: September 28, 2018

- 1. Office hours the fifth week of classes are M 11:30-12:30, W 3-4, and Th 9-10.
- 2. Read Rudin Sections 2.15-42.
- 3. Do problems 6,9,10, and 11 from Rudin Chapter 1.
- 4. Prove there is exactly one way to give \mathbb{Q} the structure of an ordered field. (That is, given another order \boxplus on \mathbb{Q} that satisfies the axioms of an ordered field, prove that $a \boxplus b$ if and only if a < b.)
- 5. Prove that neither \mathbb{C} nor $\mathbb{Z}/p\mathbb{Z}$ can be given the structure of an ordered field.
- 6. Existence and near-uniqueness of decimal expansions in arbitrary base. Given $x \in \mathbb{R}$ with x > 0 and an integer $k \ge 2$, define a_0, a_1, a_2, \ldots recursively by setting $a_0 = \lfloor x \rfloor$ (the largest integer less than or equal to x) and a_n to be the largest integer such that

$$a_0 + \frac{a_1}{k} + \frac{a_2}{k^2} + \dots + \frac{a_n}{k^n} \leqslant x.$$

- (a) Show that $0 \leq a_i \leq k-1$ for all $i \geq 1$.
- (b) Let $r_n = a_0 + \frac{a_1}{k} + \dots + \frac{a_n}{k^n}$. Show that $\sup\{r_0, r_1, \dots\} = x$.
- (c) Show that if we have sequences of integers $(a_0, a_1, ...)$ and $(a'_0, a'_1, ...)$ such that
 - $0 \leq a_i \leq k-1$ and $0 \leq a'_i \leq k-1$ for all i.
 - If r_1 and r'_i are the sums defined in part (b) for a_i and a'_i respectively, then $\sup\{r_0, r_1, \ldots\} = \sup\{r'_0, r'_1, \ldots\}.$
 - For each N there exists n > N and m > N such that $a_n \neq k-1$ and $a'_m \neq k-1$. then $a_i = a'_i$ for all i.