Homework 3 Solutions

MTH 327H
4. (a) We consider $f:[0,1] \rightarrow[1,3]$ given by $f(x)=2 x+1$. We claim this is a bijection. For if $g:[1,3] \rightarrow[0,1]$ is given by $g(x)=\frac{x-1}{2}$, then $g(f(x))=\frac{(2 x+1)-1}{2}=x$ and $f(g(x))=2\left(\frac{x-1}{2}\right)+1=x$. So g is an inverse to f and f is therefore a bijection.
(b) Consider the map $f:(0,1) \rightarrow(0, \infty)$ given by $f(x)=\frac{1}{x}-1$. We claim this is a bijection. For if $g:(0, \infty) \rightarrow(0,1)$ is given by $g(x)=\frac{1}{x+1}$, then $g(f(x))=\frac{1}{\left(\frac{1}{x}-1\right)+1}=x$ and $f(g(x))=\frac{1}{\frac{1}{x+1}}-1=x$. Hence g is an inverse to f and f is a bijection.
(c) Consider the map $f:[0,1] \rightarrow[0,1)$ defined as follows. Let $f\left(\frac{1}{2^{n}}\right)=\frac{1}{2^{n+1}}$ for $n \in \mathbb{N}$, and $f(x)=x$ for any $x \neq \frac{1}{2^{n}}$ for some n. (So, eg, $f(1)=\frac{1}{2}, f\left(\frac{1}{2}\right)=\frac{1}{4}$, and so on. The inverse to this function is $g:[0,1) \rightarrow[0,1]$ where $g\left(\frac{1}{2^{n}}\right)=\frac{1}{2^{n-1}}$ for $n \in \mathbb{N}-\{0\}$, and $g(x)=x$ otherwise. Since $f \circ g$ and $g \circ f$ are clearly identity maps, f is a bijection.
(d) Since we constructed a bijection between \mathbb{R} and $(0,1)$ in class, it suffices to show that we can construct a bijection between $(0,1) \times(0,1)$ and $(0,1)$. Let $(a, b) \in(0,1) \times(0,1)$, and let $a=. a_{1} a_{2} \cdots$ and $b=. b_{1} b_{2} \cdots$ be their decimal expansions. We construct an element of $(0,1)$ as follows. Let $n_{1}, n_{2}, n_{3}, \cdots$ be a list of all of the indices such that $a_{n_{i}} \neq 9$ and $m_{1}, m_{2}, m_{3}, \cdots$ be a list of all of the indices such that $b_{m_{i}} \neq 9$. Then we let $f(a, b)$ be $c \in(0,1)$ such that

$$
c=. a_{1} a_{2} \cdots a_{n_{1}} b_{1} \cdots b_{m_{1}} a_{n_{1}+1} \cdots a_{n_{2}} b_{n_{1}+1} \cdots b_{n_{2}} \cdots
$$

For example, $f(.3924 \ldots, .517 \ldots)=.3592147 \ldots$ That is, we interleave segments of the decimal expansions of a and b which do not end in 9 . The inverse to this function is the map g defined as follows: given $c=. c_{1} c_{2} \cdots$, let k_{1}, k_{2}, \cdots be a list of all the indices such that $c_{k_{i}} \neq 9$. Then we let $g(c)$ be the pair (a, b) such that

$$
\begin{aligned}
a & =c_{1} \cdots c_{k_{1}} c_{k_{2}+1} \cdots c_{k_{3}} \cdots \\
b & =. c_{k_{1}+1} \cdots c_{k_{2}} c_{k_{3}+1}
\end{aligned}
$$

For example, $g(.23978 \ldots)=(.27 \ldots, .398 \ldots)$. The purpose of keeping track of segments of decimal expansions not ending in 9 is to prevent g from mapping some c to an a or b ending in a string of trailing 9's (and similarly to prevent non-surjectivity of $f)$. These two functions are clearly inverses, giving the desired bijection.
5. (a) For sequences in $\{0,1\}$, we may repeat Cantor's diagonalization argument. Suppose there is a list of sequences $a_{i}=\left(a_{i j}\right)_{j=0}^{\infty}$ such that the list a_{0}, a_{1}, \cdots contains every sequence of $0^{\prime} s$ and $1^{\prime} s$. Consider the sequence $b=\left(b_{j}\right)_{j=0}^{\infty}$ defined as follows: for every j, if the j th element $a_{i j}$ of a_{i} is equal to 0 , let $b_{j}=1$, and vice versa. Then $b \neq a_{j}$.

But this is true for arbitrary j, so b is in fact not on this list of sequences! Hence we can make no such list.
(b) Let A be a subset of \mathbb{N}. To A I can associate a sequence $f(A)$ in the set S from part (a) as follows. Let $f(A)_{i}=1$ if $i \in A$ and $f(A)_{i}=0$ if $i \notin A$. This defines a bijection between A and S. Since S is uncountable, A is also uncountable.
(We may also note that binary decimal expansions of real numbers in $(0,1)$ are a subset of the sequences of elements in $\{0,1\}$, and note that a set with an uncountable subset is itself uncountable.)

