Homework 2 Solutions

MTH 327H
3. "Equivalence Relations," Exercise 3. For (a), we must show that $a \sim b$ is an equivalence relation. Let $a, b, c \in \mathbb{R}$.
Reflexivity: We observe that $\cos a=\cos a$, so $a \sim a$.
Symmetry: If $a \sim b$, then $\cos a=\cos b$, implying $\cos b=\cos a$, and hence that $b \sim a$.
Transitivity: Say $a \sim b$ and $b \sim c$. Then $\cos a=\cos b$ and $\cos b=\cos c$, so $\cos a=\cos c$. Hence $a \sim c$.

For (b), the equivalence class of 0 is $\{a \in \mathbb{R}: a \sim 0\}=\{a \in \mathbb{R}: \cos a=\cos 0=1\}=$ $\{2 \pi n: n \in \mathbb{Z}\}$. The equivalence class of $\frac{\pi}{2}$ is $\left\{a \in \mathbb{R}: a \sim \frac{\pi}{2}\right\}=\{a \in \mathbb{R}: \cos a=$ $\left.\cos \frac{\pi}{2}=0\right\}=\left\{\frac{n \pi}{2}: n \in \mathbb{Z}, n\right.$ is odd $\}$.
"Equivalence Relations," Exercise 9. (a) The order relation $a<b$ on \mathbb{R} is transitive: if $a<b$ and $b<c$, then $a<c$. However, it is not reflexive, for example because it is not true that $1<1$, and it is not symmetric, for example because $0<1$ does not imply $1<0$.
(b) The subset relation on the power set $P(S)$ of S is reflexive, since for any $A \in P(S)$, we have $A \subset A$. It is also transitive: if $A \subset B$ and $B \subset C$, it follows that $A \subset C$. However, it is not symmetric. For example, if $S=\{1,2,3\}, A=\{1\}$, and $B=\{1,2\}$, then $A \subset B$ is true but $B \subset A$ is not true.
(c) The relation $a \neq b$ on \mathbb{R} is symmetric: if $a \neq b$ then $b \neq a$. However, it is not reflexive, since it is not true that $a \neq a$. Moreover, it is not transitive: we have $3 \neq 7$ and $7 \neq 3$, but it does not follow that $3 \neq 3$.
(d)The relation $a \sim b$ if $(-1)^{a}=(-1)^{b}$ is the same as the relation $a \sim b$ if $2 \mid a-b$ introduced in class. This is reflexive: $a-a=0$ and $2 \mid 0$, so $a \sim a$. It is also symmetric: if $2 \mid a-b$, then $2 \mid b-a$, so $a \sim b$ implies that $b \sim a$. Finally, if $2 \mid a-b$ and $a \mid b-c$, then $2 \mid(a-b)+(b-c)$, implying that $a \mid a-c$, so $a \sim b$ and $b \sim c$ together imply that $a \sim c$, and thus \sim is transitive.
"Induction", Exercise 3. We observe that the described induction fails when $k+1=2$. In this case the set S consists only of the two roses A and B, and removing one only leaves the other; there is no overlap, so the argument does not imply that A and B have the same color.
(This example is also called, under a slightly different phrasing, the "horse of a different color" problem.)
4. The base case is $n=1$. In this case the left-hand side of the equation is $\sum_{i=1}^{1}=1$ and the righthand side is $\frac{()^{2}(1+1)^{2}}{4}=\frac{4}{4}=1$, so we conclude that the statement is true for $n=1$.

For the inductive step, suppose that $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$, and consider $\sum_{i=1}^{n+1} i^{3}$. We have

$$
\begin{aligned}
\sum_{i=1}^{n+1} i^{3} & =\sum_{i=1}^{n} i^{3}+(n+1)^{3} \\
& =\frac{n^{2}(n+1)^{2}}{4}+(n+1)(n+1)^{2} \\
& =\frac{\left(n^{2}+4 n+4\right)(n+1)^{2}}{4} \\
& =\frac{(n+2)^{2}(n+1)^{2}}{4} \\
& =\frac{((n+1)+1)^{2}(n+1)^{2}}{4}
\end{aligned}
$$

We conclude that the statement is true for all n.
5. Let \sim be an equivalence relation on S, and let $a, b \in S$. Suppose that $[a] \cap[b] \neq \emptyset$. Then there exists $c \in[a] \cap[b]$. Since $c \in[a], a \sim c$; since $c \in[b], b \sim c$, so by symmetry, $c \sim b$. By transitivity, $a \sim b$. Therefore if $d \in[b]$, we know by definition that $d \sim b$, so $d \sim a$ by transitivity, implying by symmetry that $a \sim d$ and $d \in[a]$. So $[b] \subset[a]$. Similarly $[a] \subset[b]$, and therefore $[a]=[b]$. We conclude that either $[a] \cap[b]=\emptyset$ or $[a]=[b]$. Hence the equivalence classes of \sim partition S.
6. Recall that the operations of addition and multiplication given in class on \mathbb{N} are

$$
\begin{aligned}
& \left\{\begin{array}{l}
a+0=a \\
a+S(b)=S(a+b)
\end{array}\right. \\
& \left\{\begin{array}{l}
a \times 0=0 \\
a \times S(b)=a+a \times b
\end{array}\right.
\end{aligned}
$$

We first show addition commutes in \mathbb{N}. First, we claim that $a+0=0+a$ for all a. For certainly $0+0=0$, and inductively if $0+a=a=a+0$, then $0+S(a)=S(0+a)=$ $S(a+0)=S(a)=S(a)+0$. Now, suppose inductively that $a+b=b+a$ for all a. Let us show that $S(b)+a=a+S(b)$ for all a. First, we know that $S(b)+0=0+S(b)$, by the base case. Suppose we know that $S(b)+a=a+S(b)$ up to some particular a. Then $S(b)+S(a)=S(S(b)+a)=S(a+S(b))=S(S(a+b))=S(S(b+a))$, and $S(a)+S(b)=S(S(a)+b)=S(b+S(a))=S(S(b+a))$. So $S(b)$ commutes with all natural numbers under addition, and therefore addition in \mathbb{N} commutes.

We now show multiplication in \mathbb{N} commutes. First, we claim $0 \times a=0=a \times 0$. For certainly $0 \times 0=0$. Inductively suppose we know that $0 \times a=0$, then $0 \times S(a)=$ $0+0 \times a=0+0=0$. So 0 commutes with all natural numbers.
Now assume inductively that $a \times b=b$ timesa commutes with all $a \in \mathbb{N}$. We know that $S(b) \times 0=0 \times S(b)$. Suppose that multiplication by $S(b)$ commutes with all natural
numbers up to a particular a, and we know that $a \times S(b)=S(b) \times a$. We then want to show that $S(b) \times S(a)=S(a) \times S(b)$.

$$
\begin{aligned}
S(b) \times S(a) & =S(b)+S(b) \times a \\
& =S(b)+a \times S(b) \\
& =S(b)+a+a \times b \\
& =a+S(b)+a \times b \\
& =S(a+b)+a \times b \\
S(a) \times S(b) & =S(a)+S(a) \times b \\
& =S(a)+b \times S(a) \\
& =S(a)+b+b \times a \\
& =b+S(a)+a \times b \\
& =S(b+a)+a \times b \\
& =S(a+b)+a \times b
\end{aligned}
$$

Here we have used that multiplication by b commutes with any natural, including $S(a)$, and that multiplication by $S(b)$ commutes with a. We conclude that multiplication is commutative in \mathbb{N}.
7. Let S be the set $\{(a, b): a, b \in \mathbb{Z}, b \neq 0\}$ and \sim be the equivalence relation $(a, b) \sim(c, d)$ if $a d=b c$. Define an operation of multiplication on S by $(a, b) \times(c, d)=(a c, b d)$. In order to show that \sim induces a well-defined operation of multiplication on $\mathbb{Q}=S / \sim$, it suffices to show that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$, then $(a c, b d) \sim\left(a^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)$. But observe that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$, then $a b^{\prime}=a^{\prime} b$, and if $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$, then $c d^{\prime}=c^{\prime} d$. Multiplying the left and right sides of the equations, we see that $a c b^{\prime} d^{\prime}=a^{\prime} c^{\prime} b d$, implying that $(a c, b d) \sim\left(a^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)$ as desired.
8. (a) Reflexivity: For any pair (a, b), we have $a+b=a+b$, so $(a, b) \sim(a, b)$.

Symmetry: If $(a, b) \sim(c, d)$, then $a+d=c+b$, so since addition commutes in \mathbb{N}, $c+b=a+d$, so $(c, d) \sim(a, b)$.
Transitivity: If $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$, then $a+d=b+c$ and $c+f=d+e$. Adding f to both sides of the first equation gives $a+d+f=b+c+f=b+d+e$. Since \mathbb{N} has additive cancellation, this implies that $a+f=b+e$. So $(a, b) \sim(e, f)$.
(b) We begin with addition. It suffices to show that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$ then $(a+c, b+d) \sim\left(a^{\prime}+c^{\prime}, b^{\prime}+d^{\prime}\right)$. But the first two equations imply that $a+b^{\prime}=b+a^{\prime}$ and $c+d^{\prime}=c^{\prime}+d$, so adding these we see that $a+b^{\prime}+c+d^{\prime}=b+a^{\prime}+c^{\prime}+d$, or $a+c+b^{\prime}+d^{\prime}=a^{\prime}+c^{\prime}+b+d$. Ergo we conclude that $(a+c, b+d) \sim\left(a^{\prime}+c^{\prime}, b^{\prime}+d^{\prime}\right)$, implying that this operation of addition is well-defined.
For multiplication, consider the operation of multiplication on S given by $(a, b) \times$ $(c, d)=(a c+b d, a d+b c)$. First observe that $(a, b) \times(c, d)=(a c+b d, a d+b c)=(c a+$
$d b, d a+c b)=(c, d) \times(a, b)$, so this operation commutes. Now suppose $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$. We claim that $(a, b) \times(c, d) \sim\left(a^{\prime}, b^{\prime}\right) \times(c, d)$. For this is equivalent to $(a c+b d, a d+b c) \sim$ $\left(a^{\prime} c+b^{\prime} d, a^{\prime} d+b^{\prime} c\right) \Leftrightarrow a c+b d+a^{\prime} d+b^{\prime} c=a^{\prime} c+b^{\prime} d+a d+b c \Leftrightarrow\left(a+b^{\prime}\right) c+\left(b+a^{\prime}\right) d=$ $\left(a^{\prime}+b\right) c+\left(a+b^{\prime}\right) d \Leftrightarrow a+b^{\prime}=b+a^{\prime} \Leftrightarrow(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$.
These two facts together imply that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$, then $(a, b) \times$ $(c, d) \sim\left(a^{\prime}, b^{\prime}\right) \times(c, d) \sim(c, d) \times\left(a^{\prime}, b^{\prime}\right) \sim\left(c^{\prime}, d^{\prime}\right) \times\left(a^{\prime}, b^{\prime}\right) \sim\left(a^{\prime}, b^{\prime}\right) \times\left(c^{\prime}, d^{\prime}\right)$.
(c) Let $[(a, b)],[(c, d)],[(e, f)]$ be elements of S / \sim.
(A1) $[(a, b)]+[(c, d)]=[(a+c, b+d)]$ is an element of S / \sim.
(A2) $[(a, b)]+[(c, d)]=[(a+c, b+d)]=[(c+a, d+b)]=[(c, d)]+[(a, b)]$.
(A3) $[(a, b)]+([(c, d)]+[(e, f)])=[(a, b)]+[(c+e, d+f)]=[(a+(c+e), b+(d+f))]=$ $[((a+c)+e,(b+d)+f)]=[(a+c, b+d)]+[(e, f)]=([(a, b)]+[(c, d)])+([b+f])$.
(A4) Consider the element $[(0,0)]$. We see that $[(a, b)]+[(0,0)]=[(a+0, b+0)]=[(a, b)]$ for any $[(a, b)]$. So $[(0,0)]$ is the additive identity.
(A5) For any $[(a, b)]$, let $-[(a, b)]=[(b, a)]$. Then $[(a, b)]+-[(a, b)]=[(a, b)]+[(b, a)]=$ $[(a+b, b+a)]=[(0,0)]$, since $(a+b)+0=0+(b+a)$.
(M1) $[(a, b)] \times[(c, d)]=[(a c+b d, a d+b c)]$ is an element of S / \sim.
$(\mathrm{M} 2)[(a, b)] \times[(c, d)]=[(a c+b d, a d+b c)]=[(d b+c a, c b+d a)]=[(c, d)]+[(b, a)]$.
(M3) We observe that

$$
\begin{aligned}
{[(a, b)] \times([(c, d)] \times[(e, f)]) } & =[(a, b)] \times[(c e+d f, c f+d e)] \\
& =[(a(c e+d f)+b(c f+d e)), a(c f+d e)+b(c e+d f))] \\
& =[(a c e+a d f+b c f+b d e, a c f+a d e+b c e+b d f)]
\end{aligned}
$$

and

$$
\begin{aligned}
([(a, b)] \times[(c, d)]) \times[(e, f)] & =([a c+b d, a d+b c)] \times[(e, f)] \\
& =[(a c+b d) e+(a d+b c) f,(a c+b d) f+(a d+b c) e)] \\
& =[(a c e+b d e+a d f+b c f, a c f+b d f+a d e+b c e)]
\end{aligned}
$$

Ergo $[(a, b)] \times([(c, d)] \times[(e, f)])=([(a, b)] \times[(c, d)]) \times[(e, f)]$.
(M4) Consider the element $[(1,0)]$. Then $[(a, b)] \times[(1,0)]=[(a(1)+b(0), a(0)+b(1))]=$ $[(a, b)]$. Moreover $[(1,0)] \neq[(0,0)]$, since $1+0 \neq 0+0$. Ergo $[(1,0)]$ is the multiplicative identity.
(D) Observe that

$$
\begin{aligned}
{[(a, b)] \times([(c, d)]+[(e, f)]) } & =[(a, b)] \times[(c+e, d+f)] \\
& =[(a(c+e)+b(d+f), a(d+f)+b(c+e))] \\
& =[((a c+b d)+(a e+b f),(a d+b c, a f+b e))] \\
& =[(a c+b d, a d+b c)]+[(a e+b f, a f+b e)] \\
& =[(a, b)] \times[(c, d)]+[(a, b)] \times[(d, e)] .
\end{aligned}
$$

However, notice that (M5) is false. For suppose that $[(2,0)]$ has a multiplicative inverse. This implies that there exists $[(a, b)]$ such that $[(1,0)]=[(2,0)] \times[(a, b)]=[(2 a, 2 b)]$. In particular, $(1,0) \sim(2 a, 2 b)$, so $1+2 b=2 a+0$. This is impossible, since one side of the equation is even and one side is odd.
9. We will construct a function H between $A^{B \times C}$ and $\left(A^{B}\right)^{C}$. Let $f \in A^{B \times C}$. Then $f: B \times C \rightarrow A$ maps a pair $(b, c) \mapsto f(b, c)$. Let $H(f) \in\left(A^{B}\right)^{C}$ be the function $H(f): C \rightarrow A^{B}$ such that $H(f)(c): B \rightarrow A$ maps b to $f(b, c)$.
In order to show that H is a bijection, we construct its inverse G. Let $j: C \rightarrow A^{B}$, so that $j(c)$ is a function $B \rightarrow A$. Then let $G(j): B \times C \rightarrow A$ be the function $G(j)(b, c)=j(c)(b)$.
Let us show that $H \circ G$ and $G \circ H$ are identity maps. First, let $j: C \rightarrow A^{B}$, and let $G(j)(b, c)=j(c)(b)$. Then $H(G(j))$ is the function mapping c to $j(c): B \rightarrow A$; this means that $H(G(j))$ is exactly the function j. Similarly, if $f \in A^{B \times C}$, we have $H(f)$ is the function mapping c to $H(f)(c): B \rightarrow A$ where $b \mapsto f(b, c)$. It then follows that $G(H(f)): B \times C \rightarrow A$ is the function mapping $(b, c) \rightarrow f(b, c)$. We conclude that G is a bijection.
10. Suppose that A and B are nonempty finite subsets. Let $A=\left\{x_{1}, \cdots, x_{m}\right\}$, with $|A|=m$, and $B=\left\{y_{1}, \cdots, y_{n}\right\}$, with $|B|=n$. We can give a complete description of a function $f: B \rightarrow A$ by choosing an element $f\left(y_{i}\right) \in A$ for each $1 \leq i \leq n$. There are m possibilities for each $f\left(y_{i}\right)$, giving m^{n} functions total. So there are $m^{n}=|A|^{|B|}$ functions from B to A. So $\left|A^{B}\right|=|A|^{|B|}$ as desired.

