Homework 2 Solutions

$\rm MTH~327H$

3. "Equivalence Relations," Exercise 3. For (a), we must show that $a \sim b$ is an equivalence relation. Let $a, b, c \in \mathbb{R}$.

Reflexivity: We observe that $\cos a = \cos a$, so $a \sim a$.

Symmetry: If $a \sim b$, then $\cos a = \cos b$, implying $\cos b = \cos a$, and hence that $b \sim a$.

Transitivity: Say $a \sim b$ and $b \sim c$. Then $\cos a = \cos b$ and $\cos b = \cos c$, so $\cos a = \cos c$. Hence $a \sim c$.

For (b), the equivalence class of 0 is $\{a \in \mathbb{R} : a \sim 0\} = \{a \in \mathbb{R} : \cos a = \cos 0 = 1\} = \{2\pi n : n \in \mathbb{Z}\}$. The equivalence class of $\frac{\pi}{2}$ is $\{a \in \mathbb{R} : a \sim \frac{\pi}{2}\} = \{a \in \mathbb{R} : \cos a = \cos \frac{\pi}{2} = 0\} = \{\frac{n\pi}{2} : n \in \mathbb{Z}, n \text{ is odd}\}.$

"Equivalence Relations," Exercise 9. (a) The order relation a < b on \mathbb{R} is transitive: if a < b and b < c, then a < c. However, it is not reflexive, for example because it is not true that 1 < 1, and it is not symmetric, for example because 0 < 1 does not imply 1 < 0.

(b) The subset relation on the power set P(S) of S is reflexive, since for any $A \in P(S)$, we have $A \subset A$. It is also transitive: if $A \subset B$ and $B \subset C$, it follows that $A \subset C$. However, it is not symmetric. For example, if $S = \{1, 2, 3\}$, $A = \{1\}$, and $B = \{1, 2\}$, then $A \subset B$ is true but $B \subset A$ is not true.

(c) The relation $a \neq b$ on \mathbb{R} is symmetric: if $a \neq b$ then $b \neq a$. However, it is not reflexive, since it is not true that $a \neq a$. Moreover, it is not transitive: we have $3 \neq 7$ and $7 \neq 3$, but it does not follow that $3 \neq 3$.

(d)The relation $a \sim b$ if $(-1)^a = (-1)^b$ is the same as the relation $a \sim b$ if 2|a - b introduced in class. This is reflexive: a - a = 0 and 2|0, so $a \sim a$. It is also symmetric: if 2|a - b, then 2|b - a, so $a \sim b$ implies that $b \sim a$. Finally, if 2|a - b and a|b - c, then 2|(a - b) + (b - c), implying that a|a - c, so $a \sim b$ and $b \sim c$ together imply that $a \sim c$, and thus \sim is transitive.

"Induction", Exercise 3. We observe that the described induction fails when k+1=2. In this case the set S consists only of the two roses A and B, and removing one only leaves the other; there is no overlap, so the argument does not imply that A and B have the same color.

(This example is also called, under a slightly different phrasing, the "horse of a different color" problem.)

4. The base case is n = 1. In this case the left-hand side of the equation is $\sum_{i=1}^{1} = 1$ and the righthand side is $\frac{(1)^2(1+1)^2}{4} = \frac{4}{4} = 1$, so we conclude that the statement is true for n = 1.

For the inductive step, suppose that $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$, and consider $\sum_{i=1}^{n+1} i^3$. We have

$$\sum_{i=1}^{n+1} i^3 = \sum_{i=1}^n i^3 + (n+1)^3$$

= $\frac{n^2(n+1)^2}{4} + (n+1)(n+1)^2$
= $\frac{(n^2 + 4n + 4)(n+1)^2}{4}$
= $\frac{(n+2)^2(n+1)^2}{4}$
= $\frac{((n+1)+1)^2(n+1)^2}{4}$

We conclude that the statement is true for all n.

- 5. Let \sim be an equivalence relation on S, and let $a, b \in S$. Suppose that $[a] \cap [b] \neq \emptyset$. Then there exists $c \in [a] \cap [b]$. Since $c \in [a]$, $a \sim c$; since $c \in [b]$, $b \sim c$, so by symmetry, $c \sim b$. By transitivity, $a \sim b$. Therefore if $d \in [b]$, we know by definition that $d \sim b$, so $d \sim a$ by transitivity, implying by symmetry that $a \sim d$ and $d \in [a]$. So $[b] \subset [a]$. Similarly $[a] \subset [b]$, and therefore [a] = [b]. We conclude that either $[a] \cap [b] = \emptyset$ or [a] = [b]. Hence the equivalence classes of \sim partition S.
- 6. Recall that the operations of addition and multiplication given in class on \mathbb{N} are

$$\begin{cases} a+0 = a\\ a+S(b) = S(a+b) \end{cases}$$
$$\begin{cases} a \times 0 = 0\\ a \times S(b) = a + a \times b \end{cases}$$

We first show addition commutes in N. First, we claim that a + 0 = 0 + a for all a. For certainly 0 + 0 = 0, and inductively if 0 + a = a = a + 0, then 0 + S(a) = S(0 + a) = S(a + 0) = S(a) = S(a) + 0. Now, suppose inductively that a + b = b + a for all a. Let us show that S(b) + a = a + S(b) for all a. First, we know that S(b) + 0 = 0 + S(b), by the base case. Suppose we know that S(b) + a = a + S(b) up to some particular a. Then S(b) + S(a) = S(S(b) + a) = S(a + S(b)) = S(S(a + b)) = S(S(b + a)), and S(a) + S(b) = S(S(a) + b) = S(b + S(a)) = S(S(b + a)). So S(b) commutes with all natural numbers under addition, and therefore addition in N commutes.

We now show multiplication in \mathbb{N} commutes. First, we claim $0 \times a = 0 = a \times 0$. For certainly $0 \times 0 = 0$. Inductively suppose we know that $0 \times a = 0$, then $0 \times S(a) = 0 + 0 \times a = 0 + 0 = 0$. So 0 commutes with all natural numbers.

Now assume inductively that $a \times b = b$ times a commutes with all $a \in \mathbb{N}$. We know that $S(b) \times 0 = 0 \times S(b)$. Suppose that multiplication by S(b) commutes with all natural

numbers up to a particular a, and we know that $a \times S(b) = S(b) \times a$. We then want to show that $S(b) \times S(a) = S(a) \times S(b)$.

$$S(b) \times S(a) = S(b) + S(b) \times a$$

= S(b) + a × S(b)
= S(b) + a + a × b
= a + S(b) + a × b
= S(a + b) + a × b

$$S(a) \times S(b) = S(a) + S(a) \times b$$

= $S(a) + b \times S(a)$
= $S(a) + b + b \times a$
= $b + S(a) + a \times b$
= $S(b + a) + a \times b$
= $S(a + b) + a \times b$

Here we have used that multiplication by b commutes with any natural, including S(a), and that multiplication by S(b) commutes with a. We conclude that multiplication is commutative in \mathbb{N} .

- 7. Let S be the set $\{(a, b) : a, b \in \mathbb{Z}, b \neq 0\}$ and \sim be the equivalence relation $(a, b) \sim (c, d)$ if ad = bc. Define an operation of multiplication on S by $(a, b) \times (c, d) = (ac, bd)$. In order to show that \sim induces a well-defined operation of multiplication on $\mathbb{Q} = S/\sim$, it suffices to show that if $(a, b) \sim (a', b')$ and $(c, d) \sim (c', d')$, then $(ac, bd) \sim (a'c', b'd')$. But observe that if $(a, b) \sim (a', b')$, then ab' = a'b, and if $(c, d) \sim (c', d')$, then cd' = c'd. Multiplying the left and right sides of the equations, we see that acb'd' = a'c'bd, implying that $(ac, bd) \sim (a'c', b'd')$ as desired.
- 8. (a) Reflexivity: For any pair (a, b), we have a + b = a + b, so $(a, b) \sim (a, b)$.

Symmetry: If $(a,b) \sim (c,d)$, then a + d = c + b, so since addition commutes in \mathbb{N} , c + b = a + d, so $(c,d) \sim (a,b)$.

Transitivity: If $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$, then a + d = b + c and c + f = d + e. Adding f to both sides of the first equation gives a + d + f = b + c + f = b + d + e. Since \mathbb{N} has additive cancellation, this implies that a + f = b + e. So $(a, b) \sim (e, f)$.

(b) We begin with addition. It suffices to show that if $(a, b) \sim (a', b')$ and $(c, d) \sim (c', d')$ then $(a+c, b+d) \sim (a'+c', b'+d')$. But the first two equations imply that a+b'=b+a' and c+d'=c'+d, so adding these we see that a+b'+c+d'=b+a'+c'+d, or a+c+b'+d'=a'+c'+b+d. Ergo we conclude that $(a+c, b+d) \sim (a'+c', b'+d')$, implying that this operation of addition is well-defined.

For multiplication, consider the operation of multiplication on S given by $(a, b) \times (c, d) = (ac + bd, ad + bc)$. First observe that $(a, b) \times (c, d) = (ac + bd, ad + bc) = (ca + bd)$.

 $db, da + cb) = (c, d) \times (a, b)$, so this operation commutes. Now suppose $(a, b) \sim (a', b')$. We claim that $(a, b) \times (c, d) \sim (a', b') \times (c, d)$. For this is equivalent to $(ac+bd, ad+bc) \sim (a'c+b'd, a'd+b'c) \Leftrightarrow ac+bd+a'd+b'c = a'c+b'd+ad+bc \Leftrightarrow (a+b')c+(b+a')d = (a'+b)c+(a+b')d \Leftrightarrow a+b'=b+a' \Leftrightarrow (a, b) \sim (a', b')$.

These two facts together imply that if $(a, b) \sim (a', b')$ and $(c, d) \sim (c', d')$, then $(a, b) \times (c, d) \sim (a', b') \times (c, d) \sim (c, d) \times (a', b') \sim (c', d') \times (a', b') \sim (a', b') \times (c', d')$.

(c) Let [(a, b)], [(c, d)], [(e, f)] be elements of S/\sim .

(A1) [(a, b)] + [(c, d)] = [(a + c, b + d)] is an element of S / \sim .

(A2) [(a,b)] + [(c,d)] = [(a+c,b+d)] = [(c+a,d+b)] = [(c,d)] + [(a,b)].

$$(A3) [(a,b)] + ([(c,d)] + [(e,f)]) = [(a,b)] + [(c+e,d+f)] = [(a+(c+e),b+(d+f))] = [((a+c)+e,(b+d)+f)] = [(a+c,b+d)] + [(e,f)] = ([(a,b)] + [(c,d)]) + ([b+f]).$$

(A4) Consider the element [(0,0)]. We see that [(a,b)]+[(0,0)] = [(a+0,b+0)] = [(a,b)] for any [(a,b)]. So [(0,0)] is the additive identity.

(A5) For any [(a, b)], let -[(a, b)] = [(b, a)]. Then [(a, b)] + -[(a, b)] = [(a, b)] + [(b, a)] = [(a + b, b + a)] = [(0, 0)], since (a + b) + 0 = 0 + (b + a).

(M1) $[(a,b)] \times [(c,d)] = [(ac+bd,ad+bc)]$ is an element of S/\sim .

 $(M2) [(a,b)] \times [(c,d)] = [(ac+bd, ad+bc)] = [(db+ca, cb+da)] = [(c,d)] + [(b,a)].$

(M3) We observe that

$$\begin{split} [(a,b)] \times ([(c,d)] \times [(e,f)]) &= [(a,b)] \times [(ce+df,cf+de)] \\ &= [(a(ce+df)+b(cf+de)), a(cf+de)+b(ce+df))] \\ &= [(ace+adf+bcf+bde,acf+ade+bce+bdf)] \end{split}$$

and

$$\begin{split} ([(a,b)] \times [(c,d)]) \times [(e,f)] &= ([ac+bd,ad+bc)] \times [(e,f)] \\ &= [(ac+bd)e + (ad+bc)f, (ac+bd)f + (ad+bc)e)] \\ &= [(ace+bde+adf+bcf, acf+bdf+ade+bce)]. \end{split}$$

Ergo $[(a,b)] \times ([(c,d)] \times [(e,f)]) = ([(a,b)] \times [(c,d)]) \times [(e,f)].$

(M4) Consider the element [(1,0)]. Then $[(a,b)] \times [(1,0)] = [(a(1)+b(0), a(0)+b(1))] = [(a,b)]$. Moreover $[(1,0)] \neq [(0,0)]$, since $1+0 \neq 0+0$. Ergo [(1,0)] is the multiplicative identity.

(D) Observe that

$$\begin{split} [(a,b)] \times ([(c,d)] + [(e,f)]) &= [(a,b)] \times [(c+e,d+f)] \\ &= [(a(c+e) + b(d+f), a(d+f) + b(c+e))] \\ &= [((ac+bd) + (ae+bf), (ad+bc, af+be))] \\ &= [(ac+bd, ad+bc)] + [(ae+bf, af+be)] \\ &= [(a,b)] \times [(c,d)] + [(a,b)] \times [(d,e)]. \end{split}$$

However, notice that (M5) is false. For suppose that [(2,0)] has a multiplicative inverse. This implies that there exists [(a,b)] such that $[(1,0)] = [(2,0)] \times [(a,b)] = [(2a,2b)]$. In particular, $(1,0) \sim (2a,2b)$, so 1+2b = 2a+0. This is impossible, since one side of the equation is even and one side is odd.

9. We will construct a function H between $A^{B \times C}$ and $(A^B)^C$. Let $f \in A^{B \times C}$. Then $f: B \times C \to A$ maps a pair $(b, c) \mapsto f(b, c)$. Let $H(f) \in (A^B)^C$ be the function $H(f): C \to A^B$ such that $H(f)(c): B \to A$ maps b to f(b, c).

In order to show that H is a bijection, we construct its inverse G. Let $j: C \to A^B$, so that j(c) is a function $B \to A$. Then let $G(j): B \times C \to A$ be the function G(j)(b,c) = j(c)(b).

Let us show that $H \circ G$ and $G \circ H$ are identity maps. First, let $j: C \to A^B$, and let G(j)(b,c) = j(c)(b). Then H(G(j)) is the function mapping c to $j(c): B \to A$; this means that H(G(j)) is exactly the function j. Similarly, if $f \in A^{B \times C}$, we have H(f) is the function mapping c to $H(f)(c): B \to A$ where $b \mapsto f(b,c)$. It then follows that $G(H(f)): B \times C \to A$ is the function mapping $(b,c) \to f(b,c)$. We conclude that G is a bijection.

10. Suppose that A and B are nonempty finite subsets. Let $A = \{x_1, \dots, x_m\}$, with |A| = m, and $B = \{y_1, \dots, y_n\}$, with |B| = n. We can give a complete description of a function $f: B \to A$ by choosing an element $f(y_i) \in A$ for each $1 \leq i \leq n$. There are m possibilities for each $f(y_i)$, giving m^n functions total. So there are $m^n = |A|^{|B|}$ functions from B to A. So $|A^B| = |A|^{|B|}$ as desired.