
Homework 2 Solutions

MTH 327H

3. “Equivalence Relations,” Exercise 3. For (a), we must show that a ∼ b is an equivalence
relation. Let a, b, c ∈ R.

Reflexivity: We observe that cos a = cos a, so a ∼ a.

Symmetry: If a ∼ b, then cos a = cos b, implying cos b = cos a, and hence that b ∼ a.

Transitivity: Say a ∼ b and b ∼ c. Then cos a = cos b and cos b = cos c, so cos a = cos c.
Hence a ∼ c.

For (b), the equivalence class of 0 is {a ∈ R : a ∼ 0} = {a ∈ R : cos a = cos 0 = 1} =
{2πn : n ∈ Z}. The equivalence class of π

2
is {a ∈ R : a ∼ π

2
} = {a ∈ R : cos a =

cos π
2

= 0} = {nπ
2

: n ∈ Z, n is odd}.

“Equivalence Relations,” Exercise 9. (a) The order relation a < b on R is transitive: if
a < b and b < c, then a < c. However, it is not reflexive, for example because it is not
true that 1 < 1, and it is not symmetric, for example because 0 < 1 does not imply
1 < 0.

(b) The subset relation on the power set P (S) of S is reflexive, since for any A ∈ P (S),
we have A ⊂ A. It is also transitive: if A ⊂ B and B ⊂ C, it follows that A ⊂ C.
However, it is not symmetric. For example, if S = {1, 2, 3}, A = {1}, and B = {1, 2},
then A ⊂ B is true but B ⊂ A is not true.

(c) The relation a 6= b on R is symmetric: if a 6= b then b 6= a. However, it is not
reflexive, since it is not true that a 6= a. Moreover, it is not transitive: we have 3 6= 7
and 7 6= 3, but it does not follow that 3 6= 3.

(d)The relation a ∼ b if (−1)a = (−1)b is the same as the relation a ∼ b if 2|a − b
introduced in class. This is reflexive: a−a = 0 and 2|0, so a ∼ a. It is also symmetric:
if 2|a− b, then 2|b− a, so a ∼ b implies that b ∼ a. Finally, if 2|a− b and a|b− c, then
2|(a− b) + (b− c), implying that a|a− c, so a ∼ b and b ∼ c together imply that a ∼ c,
and thus ∼ is transitive.

“Induction”, Exercise 3. We observe that the described induction fails when k+1 = 2.
In this case the set S consists only of the two roses A and B, and removing one only
leaves the other; there is no overlap, so the argument does not imply that A and B
have the same color.

(This example is also called, under a slightly different phrasing, the “horse of a different
color” problem.)

4. The base case is n = 1. In this case the left-hand side of the equation is
∑1

i=1 = 1 and

the righthand side is (1)2(1+1)2

4
= 4

4
= 1, so we conclude that the statement is true for

n = 1.



For the inductive step, suppose that
∑n

i=1 i
3 = n2(n+1)2

4
, and consider

∑n+1
i=1 i

3. We
have

n+1∑
i=1

i3 =
n∑
i=1

i3 + (n+ 1)3

=
n2(n+ 1)2

4
+ (n+ 1)(n+ 1)2

=
(n2 + 4n+ 4)(n+ 1)2

4

=
(n+ 2)2(n+ 1)2

4

=
((n+ 1) + 1)2(n+ 1)2

4

We conclude that the statement is true for all n.

5. Let ∼ be an equivalence relation on S, and let a, b ∈ S. Suppose that [a] ∩ [b] 6= ∅.
Then there exists c ∈ [a]∩ [b]. Since c ∈ [a], a ∼ c; since c ∈ [b], b ∼ c, so by symmetry,
c ∼ b. By transitivity, a ∼ b. Therefore if d ∈ [b], we know by definition that d ∼ b,
so d ∼ a by transitivity, implying by symmetry that a ∼ d and d ∈ [a]. So [b] ⊂ [a].
Similarly [a] ⊂ [b], and therefore [a] = [b]. We conclude that either [a] ∩ [b] = ∅ or
[a] = [b]. Hence the equivalence classes of ∼ partition S.

6. Recall that the operations of addition and multiplication given in class on N are

{
a+ 0 = a

a+ S(b) = S(a+ b){
a× 0 = 0

a× S(b) = a+ a× b

We first show addition commutes in N. First, we claim that a+ 0 = 0 +a for all a. For
certainly 0 + 0 = 0, and inductively if 0 + a = a = a+ 0, then 0 + S(a) = S(0 + a) =
S(a+ 0) = S(a) = S(a) + 0. Now, suppose inductively that a+ b = b+ a for all a. Let
us show that S(b) + a = a + S(b) for all a. First, we know that S(b) + 0 = 0 + S(b),
by the base case. Suppose we know that S(b) + a = a + S(b) up to some particular
a. Then S(b) + S(a) = S(S(b) + a) = S(a + S(b)) = S(S(a + b)) = S(S(b + a)), and
S(a) + S(b) = S(S(a) + b) = S(b + S(a)) = S(S(b + a)). So S(b) commutes with all
natural numbers under addition, and therefore addition in N commutes.

We now show multiplication in N commutes. First, we claim 0 × a = 0 = a × 0. For
certainly 0 × 0 = 0. Inductively suppose we know that 0 × a = 0, then 0 × S(a) =
0 + 0× a = 0 + 0 = 0. So 0 commutes with all natural numbers.

Now assume inductively that a×b = b timesa commutes with all a ∈ N. We know that
S(b) × 0 = 0 × S(b). Suppose that multiplication by S(b) commutes with all natural



numbers up to a particular a, and we know that a × S(b) = S(b) × a. We then want
to show that S(b)× S(a) = S(a)× S(b).

S(b)× S(a) = S(b) + S(b)× a
= S(b) + a× S(b)

= S(b) + a+ a× b
= a+ S(b) + a× b
= S(a+ b) + a× b

S(a)× S(b) = S(a) + S(a)× b
= S(a) + b× S(a)

= S(a) + b+ b× a
= b+ S(a) + a× b
= S(b+ a) + a× b
= S(a+ b) + a× b

Here we have used that multiplication by b commutes with any natural, including S(a),
and that multiplication by S(b) commutes with a. We conclude that multiplication is
commutative in N.

7. Let S be the set {(a, b) : a, b ∈ Z, b 6= 0} and∼ be the equivalence relation (a, b) ∼ (c, d)
if ad = bc. Define an operation of multiplication on S by (a, b) × (c, d) = (ac, bd). In
order to show that ∼ induces a well-defined operation of multiplication on Q = S/ ∼,
it suffices to show that if (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′), then (ac, bd) ∼ (a′c′, b′d′).
But observe that if (a, b) ∼ (a′, b′), then ab′ = a′b, and if (c, d) ∼ (c′, d′), then cd′ = c′d.
Multiplying the left and right sides of the equations, we see that acb′d′ = a′c′bd,
implying that (ac, bd) ∼ (a′c′, b′d′) as desired.

8. (a) Reflexivity: For any pair (a, b), we have a+ b = a+ b, so (a, b) ∼ (a, b).

Symmetry: If (a, b) ∼ (c, d), then a + d = c + b, so since addition commutes in N,
c+ b = a+ d, so (c, d) ∼ (a, b).

Transitivity: If (a, b) ∼ (c, d) and (c, d) ∼ (e, f), then a+ d = b+ c and c+ f = d+ e.
Adding f to both sides of the first equation gives a + d + f = b + c + f = b + d + e.
Since N has additive cancellation, this implies that a+ f = b+ e. So (a, b) ∼ (e, f).

(b) We begin with addition. It suffices to show that if (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′)
then (a+c, b+d) ∼ (a′+c′, b′+d′). But the first two equations imply that a+b′ = b+a′

and c + d′ = c′ + d, so adding these we see that a + b′ + c + d′ = b + a′ + c′ + d, or
a+ c+ b′ + d′ = a′ + c′ + b+ d. Ergo we conclude that (a+ c, b+ d) ∼ (a′ + c′, b′ + d′),
implying that this operation of addition is well-defined.

For multiplication, consider the operation of multiplication on S given by (a, b) ×
(c, d) = (ac+ bd, ad+ bc). First observe that (a, b)× (c, d) = (ac+ bd, ad+ bc) = (ca+



db, da+ cb) = (c, d)× (a, b), so this operation commutes. Now suppose (a, b) ∼ (a′, b′).
We claim that (a, b)×(c, d) ∼ (a′, b′)×(c, d). For this is equivalent to (ac+bd, ad+bc) ∼
(a′c+ b′d, a′d+ b′c)⇔ ac+ bd+ a′d+ b′c = a′c+ b′d+ ad+ bc⇔ (a+ b′)c+ (b+ a′)d =
(a′ + b)c+ (a+ b′)d⇔ a+ b′ = b+ a′ ⇔ (a, b) ∼ (a′, b′).

These two facts together imply that if (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′), then (a, b)×
(c, d) ∼ (a′, b′)× (c, d) ∼ (c, d)× (a′, b′) ∼ (c′, d′)× (a′, b′) ∼ (a′, b′)× (c′, d′).

(c) Let [(a, b)], [(c, d)], [(e, f)] be elements of S/ ∼.

(A1) [(a, b)] + [(c, d)] = [(a+ c, b+ d)] is an element of S/ ∼.

(A2) [(a, b)] + [(c, d)] = [(a+ c, b+ d)] = [(c+ a, d+ b)] = [(c, d)] + [(a, b)].

(A3) [(a, b)]+([(c, d)]+ [(e, f)]) = [(a, b)]+ [(c+e, d+f)] = [(a+(c+e), b+(d+f))] =
[((a+ c) + e, (b+ d) + f)] = [(a+ c, b+ d)] + [(e, f)] = ([(a, b)] + [(c, d)]) + ([b+ f ]).

(A4) Consider the element [(0, 0)]. We see that [(a, b)]+[(0, 0)] = [(a+0, b+0)] = [(a, b)]
for any [(a, b)]. So [(0, 0)] is the additive identity.

(A5) For any [(a, b)], let −[(a, b)] = [(b, a)]. Then [(a, b)]+−[(a, b)] = [(a, b)]+[(b, a)] =
[(a+ b, b+ a)] = [(0, 0)], since (a+ b) + 0 = 0 + (b+ a).

(M1) [(a, b)]× [(c, d)] = [(ac+ bd, ad+ bc)] is an element of S/ ∼.

(M2) [(a, b)]× [(c, d)] = [(ac+ bd, ad+ bc)] = [(db+ ca, cb+ da)] = [(c, d)] + [(b, a)].

(M3) We observe that

[(a, b)]× ([(c, d)]× [(e, f)]) = [(a, b)]× [(ce+ df, cf + de)]

= [(a(ce+ df) + b(cf + de)), a(cf + de) + b(ce+ df))]

= [(ace+ adf + bcf + bde, acf + ade+ bce+ bdf)]

and

([(a, b)]× [(c, d)])× [(e, f)] = ([ac+ bd, ad+ bc)]× [(e, f)]

= [(ac+ bd)e+ (ad+ bc)f, (ac+ bd)f + (ad+ bc)e)]

= [(ace+ bde+ adf + bcf, acf + bdf + ade+ bce)].

Ergo [(a, b)]× ([(c, d)]× [(e, f)]) = ([(a, b)]× [(c, d)])× [(e, f)].

(M4) Consider the element [(1, 0)]. Then [(a, b)]× [(1, 0)] = [(a(1)+b(0), a(0)+b(1))] =
[(a, b)]. Moreover [(1, 0)] 6= [(0, 0)], since 1+0 6= 0+0. Ergo [(1, 0)] is the multiplicative
identity.

(D) Observe that

[(a, b)]× ([(c, d)] + [(e, f)]) = [(a, b)]× [(c+ e, d+ f)]

= [(a(c+ e) + b(d+ f), a(d+ f) + b(c+ e))]

= [((ac+ bd) + (ae+ bf), (ad+ bc, af + be))]

= [(ac+ bd, ad+ bc)] + [(ae+ bf, af + be)]

= [(a, b)]× [(c, d)] + [(a, b)]× [(d, e)].



However, notice that (M5) is false. For suppose that [(2, 0)] has a multiplicative inverse.
This implies that there exists [(a, b)] such that [(1, 0)] = [(2, 0)] × [(a, b)] = [(2a, 2b)].
In particular, (1, 0) ∼ (2a, 2b), so 1 + 2b = 2a+ 0. This is impossible, since one side of
the equation is even and one side is odd.

9. We will construct a function H between AB×C and (AB)C . Let f ∈ AB×C . Then
f : B × C → A maps a pair (b, c) 7→ f(b, c). Let H(f) ∈ (AB)C be the function
H(f) : C → AB such that H(f)(c) : B → A maps b to f(b, c).

In order to show that H is a bijection, we construct its inverse G. Let j : C → AB,
so that j(c) is a function B → A. Then let G(j) : B × C → A be the function
G(j)(b, c) = j(c)(b).

Let us show that H ◦ G and G ◦H are identity maps. First, let j : C → AB, and let
G(j)(b, c) = j(c)(b). Then H(G(j)) is the function mapping c to j(c) : B → A; this
means that H(G(j)) is exactly the function j. Similarly, if f ∈ AB×C , we have H(f)
is the function mapping c to H(f)(c) : B → A where b 7→ f(b, c). It then follows that
G(H(f)) : B ×C → A is the function mapping (b, c)→ f(b, c). We conclude that G is
a bijection.

10. Suppose that A and B are nonempty finite subsets. Let A = {x1, · · · , xm}, with
|A| = m, and B = {y1, · · · , yn}, with |B| = n. We can give a complete description of
a function f : B → A by choosing an element f(yi) ∈ A for each 1 ≤ i ≤ n. There
are m possibilities for each f(yi), giving mn functions total. So there are mn = |A||B|
functions from B to A. So |AB| = |A||B| as desired.


