Homework 2 Solutions

MTH 327H

3. “Equivalence Relations,” Exercise 3. For (a), we must show that a ~ b is an equivalence
relation. Let a,b,c € R.

Reflexivity: We observe that cosa = cosa, so a ~ a.
Symmetry: If a ~ b, then cosa = cosb, implying cos b = cos a, and hence that b ~ a.

Transitivity: Say a ~ band b ~ ¢. Then cosa = cosb and cos b = cos ¢, so cos a = cos c.
Hence a ~ c.

For (b), the equivalence class of 0 is {a € R:a ~ 0} = {a € R: cosa = cos0 =1} =
{27n : n € Z}. The equivalence class of 5 is {a € R:a ~ J} = {a € R: cosa =
cosy =0} = {5 :n € Z,n is odd}.

“Equivalence Relations,” Exercise 9. (a) The order relation a < b on R is transitive: if
a < band b < ¢, then a < c. However, it is not reflexive, for example because it is not
true that 1 < 1, and it is not symmetric, for example because 0 < 1 does not imply
1<0.

(b) The subset relation on the power set P(.S) of S is reflexive, since for any A € P(5),
we have A C A. It is also transitive: if A C B and B C C, it follows that A C C.
However, it is not symmetric. For example, if S = {1,2,3}, A = {1}, and B = {1, 2},
then A C B is true but B C A is not true.

(c) The relation a # b on R is symmetric: if a # b then b # a. However, it is not
reflexive, since it is not true that a # a. Moreover, it is not transitive: we have 3 # 7
and 7 # 3, but it does not follow that 3 # 3.

(d)The relation a ~ b if (—1)% = (=1)° is the same as the relation a ~ b if 2|a — b
introduced in class. This is reflexive: a —a = 0 and 2|0, so a ~ a. It is also symmetric:
if 2|a — b, then 2|b — a, so a ~ b implies that b ~ a. Finally, if 2|a — b and a|b — ¢, then
2|(a—b) + (b—c¢), implying that ala — ¢, so a ~ b and b ~ ¢ together imply that a ~ ¢,
and thus ~ is transitive.

“Induction”, Exercise 3. We observe that the described induction fails when k+1 = 2.
In this case the set S consists only of the two roses A and B, and removing one only
leaves the other; there is no overlap, so the argument does not imply that A and B
have the same color.

(This example is also called, under a slightly different phrasing, the “horse of a different
color” problem.)

4. The base case is n = 1. In this case the left-hand side of the equation is 23:1 =1 and

the righthand side is W = j—‘; = 1, so we conclude that the statement is true for
n=1.
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We conclude that the statement is true for all n.

. Let ~ be an equivalence relation on S, and let a,b € S. Suppose that [a] N [b] # 0.
Then there exists ¢ € [a]N[b]. Since ¢ € [a], a ~ ¢; since ¢ € [b], b ~ ¢, so by symmetry,
¢ ~ b. By transitivity, a ~ b. Therefore if d € [b], we know by definition that d ~ b,
so d ~ a by transitivity, implying by symmetry that a ~ d and d € [a]. So [b] C [a].
Similarly [a] C [b], and therefore [a] = [b]. We conclude that either [a] N [b] = @ or
[a] = [b]. Hence the equivalence classes of ~ partition S.

. Recall that the operations of addition and multiplication given in class on N are

a+0=a
a+ S(b) = S(a+0b)

ax0=0
axSb)y=a+axb

We first show addition commutes in N. First, we claim that a +0 = 0+ a for all a. For
certainly 0 + 0 = 0, and inductively if 0 + @ = a = a + 0, then 0+ S(a) = S(0+a) =
S(a+0) = S(a) = S(a) +0. Now, suppose inductively that a +b = b+ a for all a. Let
us show that S(b) +a = a + S(b) for all a. First, we know that S(b) +0 = 0+ S(b),
by the base case. Suppose we know that S(b) + a = a + S(b) up to some particular
a. Then S(b) + S(a) = S(S(b) +a) = S(a+ S(b)) = S(S(a+b)) = S(S(b+a)), and
S(a) + S() = S(S(a) +b) = S(b+ S(a)) = S(S(b+a)). So S(b) commutes with all
natural numbers under addition, and therefore addition in N commutes.

We now show multiplication in N commutes. First, we claim 0 x a =0 = a x 0. For

certainly 0 x 0 = 0. Inductively suppose we know that 0 x a = 0, then 0 x S(a) =
0+0xa=040=0. So 0 commutes with all natural numbers.

Now assume inductively that a x b = b timesa commutes with all a € N. We know that
S(b) x 0 =0 x S(b). Suppose that multiplication by S(b) commutes with all natural



numbers up to a particular a, and we know that a x S(b) = S(b) x a. We then want
to show that S(b) x S(a) = S(a) x S(b).

S(b) x S(a) = S(b) + S(b) x a

Here we have used that multiplication by b commutes with any natural, including S(a),
and that multiplication by S(b) commutes with a. We conclude that multiplication is
commutative in N.

7. Let S be the set {(a,b) : a,b € Z,b # 0} and ~ be the equivalence relation (a, b) ~ (¢, d)
if ad = be. Define an operation of multiplication on S by (a,b) x (¢,d) = (ac,bd). In
order to show that ~ induces a well-defined operation of multiplication on Q = S/ ~,
it suffices to show that if (a,b) ~ (a’,¥') and (¢, d) ~ (', d’), then (ac,bd) ~ (a'd,0'd").
But observe that if (a,b) ~ (a’,b’), then ab’ = a'b, and if (¢, d) ~ (¢, d’), then ed’ = d.
Multiplying the left and right sides of the equations, we see that ach/d = d'c'bd,
implying that (ac,bd) ~ (a'd,b'd’) as desired.

8. (a) Reflexivity: For any pair (a,b), we have a +b = a + b, so (a,b) ~ (a,b).

Symmetry: If (a,b) ~ (¢,d), then a +d = ¢+ b, so since addition commutes in N,
c+b=a+d,so (c,d) ~ (a,b).

Transitivity: If (a,b) ~ (¢,d) and (¢,d) ~ (e, f), thena+d=b+cand c+ f =d+e.
Adding f to both sides of the first equation gives a+d+ f=b+c+ f=b+d+e.
Since N has additive cancellation, this implies that a + f = b+ e. So (a,b) ~ (e, f).
(b) We begin with addition. It suffices to show that if (a,b) ~ (a/, ') and (¢, d) ~ (¢, d)
then (a+c¢,b+d) ~ (a'+¢,b'+d'). But the first two equations imply that a+0 = b+d’
and ¢ + d = ¢ + d, so adding these we see that a +b +c+d =b+d + +d, or
atc+lV +d=d+c+b+d. Ergowe conclude that (a+c,b+d) ~ (a' +, 0 +d'),
implying that this operation of addition is well-defined.

For multiplication, consider the operation of multiplication on S given by (a,b) X
(¢,d) = (ac+ bd,ad + bc). First observe that (a,b) X (¢,d) = (ac+ bd, ad + bc) = (ca +



db, da + cb) = (¢, d) x (a,b), so this operation commutes. Now suppose (a,b) ~ (a’, ).
We claim that (a, b) x (¢, d) ~ (a’,b") x (¢, d). For this is equivalent to (ac+bd, ad+bc) ~
(de+bd,dd+bc) = ac+bd+dd+bc=dc+bd+ad+bcs (a+V)ec+ (b+d)d =
(@ +bc+ (a+V)d=a+l =b+d < (a,b) ~ (d,V).

These two facts together imply that if (a,b) ~ (a’,V') and (¢, d) ~ (¢, d’), then (a, b) x
(e,d) ~ (a,0) x (¢c,d) ~ (¢,d) x (a/,0) ~ (¢, d) x (a', V) ~ (a',V) x (¢, d).

c) Let [(a,b)],[(c,d)],[(e, f)] be elements of S/ ~.
Al) [(a,b)] + [(c,d)] = [(a + ¢, b+ d)] is an element of S/ ~.
A2) [(@,0)] +[(e,d)] = [(a + ¢, b+ d)] = [(¢ + a,d + b)] = [(¢, d)] + [(a, D)].

(
(
(
(A3) [(a, D)1+ ([, D] +[(e, N)]) = [(a, D) + [(c +e,d+ f)] = [(a+(c+e), b+ (d+ f))] =
((a+¢) +e.(b+d) + D) = [(a+eb+d)] +[(e /)] = (@) + [(e.d))) + (b + D).
(A

f

| =
4) Consider the element [(0,0)]. We see that [(a, b)]+[(0,0)] = [(a+0,b40)] = [(a, )]
or any [(a,b)]. So [(0,0)] is the additive identity.

A5) For any [(a,b)], let —[(a,b)] = [(b,a)]. Then [(a,b)]+—[(a,b)] = [(a,b)]+[(b,a)] =
(a+b,b+a)] =[(0,0)], since (a+b)+0=0+ (b+ a).

(

[

(M1) [(a,b)] x [(c,d)] = [(ac + bd,ad + bc)] is an element of S/ ~.

(M2) [(a, b)] x [(c,d)] = [(ac+ bd, ad + bc)] = [(db + ca, cb + da)] = [(¢,d)] + [(b, a)].
(M3)

M3) We observe that

[(a, )] x ([(e, )] x [(e, £)])

[(a,b)] x [(ce + df,cf + de)]
[(a(ce +df) + b(cf + de)),alcf + de) + b(ce + df))]
[(ace + adf + bef + bde, acf + ade + bee + bdf))]

and

([(a, 0)] x [(c, d)]) x [(e, f)] = (lac + bd; ad + be)] x [(e, f)]
[(ac 4+ bd)e + (ad + be) f, (ac + bd) f + (ad + be)e)]

[(ace + bde + adf + bef,acf + bdf + ade + bee).

= ([(a, 0)] x [(c, d)]) x [(e, F)]-
)% Then [(a, b)] x[(1,0)] = [(a(1) +-b(0), a(0) +b(1))] =

)], since 140 # 0+0. Ergo [(1,0)] is the multiplicative

Ergo [(a,b)] x ([(¢,d)] x [(e, /)]

)
(M4) Consider the element [(1,0
[(a,b)]. Moreover [(1,0)] # [(0,0
identity.

(D) Observe that

[(a, )] x ([(¢,d)] + [(e, )]) b)] x [(c+e,d+ f)]
(c+e)+bld+ f),ald+ f)+blc+e))

[(a,
[(a
[((ac+ bd) + (ae + bf), (ad + be,af + be))]
[(
[(a,

ac+bd,ad + be)| + [(ae + bf, af + be)]
b)] x [(¢, d)] + [(a, )] x [(d; e)].



10.

However, notice that (M5) is false. For suppose that [(2,0)] has a multiplicative inverse.
This implies that there exists [(a, b)] such that [(1,0)] = [(2,0)] x [(a,d)] = [(2a, 2b)].
In particular, (1,0) ~ (2a,2b), so 1+ 2b = 2a + 0. This is impossible, since one side of
the equation is even and one side is odd.

. We will construct a function H between AP*¢ and (AB)C. Let f € AP*C. Then

f: BxC — A maps a pair (b,c) — f(b,c). Let H(f) € (AP) be the function
H(f): C — AP such that H(f)(c): B— A maps b to f(b,c).

In order to show that H is a bijection, we construct its inverse G. Let j: C — AB,
so that j(c) is a function B — A. Then let G(j): B x C — A be the function
G(7)(b, ¢) = j(c)(b).

Let us show that H o G and G o H are identity maps. First, let j: C' — AP, and let
G(j)(b,c) = j(c)(b). Then H(G(j)) is the function mapping ¢ to j(c): B — A; this
means that H(G(j)) is exactly the function j. Similarly, if f € AP*Y we have H(f)
is the function mapping ¢ to H(f)(c): B — A where b — f(b,¢). It then follows that
G(H(f)): Bx C — A is the function mapping (b, c) — f(b,c). We conclude that G is
a bijection.

Suppose that A and B are nonempty finite subsets. Let A = {xy, -+, z,,}, with
|A| =m, and B = {y1,--- ,yn}, with |B| = n. We can give a complete description of
a function f: B — A by choosing an element f(y;) € A for each 1 < i < n. There
are m possibilities for each f(y;), giving m" functions total. So there are m™ = |A|!?!
functions from B to A. So |A”| = |A|lBl as desired.



