Homework 1 Solutions

MTH 327H
6. Let S, T, and V be sets. First we will show that $S \cup(T \cap V)$ is a subset of $(S \cup T) \cap(S \cup V)$. Suppose that $x \in S \cup(T \cap V)$. Then one of $x \in S$ or $x \in T \cap V$ is true. In the first case, if $x \in S$, it follows that $x \in S \cup T$ and $x \in S \cup V$. Therefore since x is in both of these sets, we see that $x \in(S \cup T) \cap(S \cup V)$. In the second case, if x is in $T \cap V$, we see that $x \in T$ and $x \in V$. Therefore it is also true that $x \in S \cup V$ and $x \in S \cup T$. Since both of these things are true, it follows that $x \in(S \cup V) \cap(S \cup T)$. Since x was an arbitrary element of $S \cup(T \cap V)$, we conclude that $S \cup(T \cap V) \subseteq(S \cup T) \cap(S \cup V)$.

Now we will show that $(S \cup T) \cap(S \cup V)$ is a subset of $S \cup(T \cap V)$. Let $x \in(S \cup T) \cap(S \cup V)$. Then $x \in S \cup T$ and $x \in S \cup V$. There are two cases, $x \in S$ and $x \notin S$. If $x \in S$, then $x \in S \cup(T \cap V)$. If $x \notin S$, then since $x \in S \cup T$, we must have $x \in T$, and since $x \in S \cup V$, we must have $x \in V$. Ergo since $x \in T$ and $x \in V$, we see that $x \in T \cap V$. Therefore $x \in S \cup(T \cap V)$. Since in either case $x \in S \cup(T \cap V)$, we conclude that $(S \cup T) \cap(S \cup V) \subseteq S \cup(T \cap V)$.

Therefore, since $S \cup(T \cap V) \subseteq(S \cup T) \cap(S \cup V)$ and $(S \cup T) \cap(S \cup V) \subseteq S \cup(T \cap V)$ are both true, it must be the case that $S \cup(T \cap V)=(S \cup T) \cap(S \cup V)$.
7. Sets and Logic Exercises
(15) Let B and C be nonempty sets, and $f: B \times C \rightarrow C \times B$ be the function given by $f(x, y)=(y, x)$. I claim this function is a bijection. By a lemma in class, it suffices to show that f has an inverse. Let g be the function $g: C \times B \rightarrow B \times C$ be the function given by $g(y, x)=(x, y)$. Then $g \circ f(x, y)=g(y, x)=(x, y)$ and $f \circ g(y, x)=f(x, y)=(y, x)$. We conclude that g is an inverse function for f. Therefore f is a bijection.
(19) Let (x, y) be an $A \times(B \cup C)$, so that (by definition) $x \in A$ and $y \in B \cup C$. Then either $y \in B$ or $y \in C$. In the first case, $(x, y) \in A \times B$, and in the second case $(x, y) \in A \times C$. Either of these possibilities implies that $(x, y) \in(A \times B) \cup(A \times C)$. Since (x, y) was an arbitrary element of $A \times(B \cup C)$, we conclude that $A \times(B \cup C) \subseteq$ $(A \times B) \cup(A \times C)$.

Conversely, suppose $(x, y) \in(A \times B) \cup(A \times C)$. Then either $(x, y) \in A \times B$ or $(x, y) \in A \times C$. If $(x, y) \in A \times B$, then $x \in A$ and $y \in B$. The second statement implies that $y \in B \cup C$. So (x, y) is an element of $A \times(B \cup C)$. If instead $(x, y) \in A \times C$, a similar chain of reasoning shows $(x, y) \in A \times(B \cup C)$. Since (x, y) was an arbitrary element of $(A \times B) \cup(A \times C)$, we conclude that $(A \times B) \cup(A \times C) \subseteq A \times(B \cup C)$.

Since both $A \times(B \cup C) \subseteq(A \times B) \cup(A \times C)$ and $(A \times B) \cup(A \times C) \subseteq A \times(B \cup C)$ are true, we conclude that $A \times(B \cup C)=(A \times B) \cup(A \times C)$.
(20) (a) We want to show $U-(A \cap B)=(U-A) \cup(U-B)$. First let $x \in U-(A \cap B)$. Then $x \in U$ but $x \notin A \cap B$. Since x is not in $A \cap B$, either $x \notin A$ or $x \notin B$. If $x \notin A$, then $x \in U-A$. So $x \in(U-A) \cup(U-B)$. Similarly, if $x \notin B$, then $x \in(U-A) \cup(U-B)$. So $U-(A \cap B) \subseteq(U-A) \cup(U-B)$.

Conversely, let $x \in(U-A) \cup(U-B)$. Then either $x \in U-A$ or $x \in U-B$. If $x \in U-A$, then $x \notin A$, so $x \notin A \cap B$. Hence $x \in U-(A \cap B)$. Similarly if $x \in U-B$, it follows that $x \in U-(A \cap B)$. Hence we conclude that $U-(A \cap B)=(U-A) \cup(U-B)$.
(b) We want to show $U-(A \cup B)=(U-A) \cap(U-B)$. First, we claim that if S is any subset of $U, U-(U-S)=S$). For if $x \in S$, then $x \notin U-S$, so $x \in U-(U-S)$); the converse argument is identical. Using this, we see $A \cup B=$ $(U-(U-A)) \cup(U-U-B))=U-((U-A) \cap(U-B)$) by part (a). But then $U-(A \cup B)=U-(U-((U-A) \cap(U-B)))=(U-A) \cap(U-B)$.
(22) No; consider $A=\{1,2,3\}$ and $B=\{2,3,4\}$. We see that $|A|=3=|B|$, but $|A \cup B|=4$.
(28) (a) Let $f: B \rightarrow C$ and $g: C \rightarrow D$ such that $g \circ f: B \rightarrow D$ is injective. Let x_{1}, x_{2} be any two elements of B such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $g \circ f\left(x_{1}\right)=g \circ f\left(x_{2}\right)$. Since $g \circ f$ is injective, it follows that $x_{1}=x_{2}$. Hence f is injective.
(b) Let f be the function $f:\{0\} \rightarrow\{1,2\}$ such that $f(0)=1$ and let g be the function $g:\{1,2\} \rightarrow\{3\}$ such that $g(1)=g(2)=3$. Then g is not injective, since $g(1)=g(2)$, but $g \circ f:\{0\} \rightarrow\{3\}$ is the function given by $g \circ f(0)=3$, hence is injective.
(29) (a) Let $f: B \rightarrow C$ and $g: C \rightarrow D$ such that $g \circ f: B \rightarrow D$ is surjective. Let $z \in D$. Then by assumption, there exists $x \in B$ such that $g \circ f(x)=z$. But then if $y=f(x)$, we see that in fact $g(y)=z$. So for any $z \in D$ there exists a $y \in C$ such that $g(y)=z$. Ergo g is surjective.
(b) Let f be the function $f:\{0\} \rightarrow\{1,2\}$ such that $f(0)=1$ and let g be the function $g:\{1,2\} \rightarrow\{3\}$ such that $g(1)=g(2)=3$. Then f is not surjective, since there is no $x \in\{0\}$ such that $f(x)=2$, but $g \circ f:\{0\} \rightarrow\{3\}$ is the function given by $g \circ f(0)=3$, hence is surjective.
(33)(a) Let $f: B \rightarrow C$ and $S, T \subseteq B$. Let $y \in f(S \cup T)$. By definition, there exists $x \in S \cup T$ such that $f(x)=y$. Since $x \in S \cup T$, either $x \in S$ or $x \in T$. If $x \in S, f(x)=y \in f(S)$. If instead $x \in T, f(x)=y \in f(T)$. In either case, we see $y \in f(S) \cup f(T)$. So since y was arbitrary, $f(S \cup T) \subseteq f(S) \cup f(T)$.

Conversely, suppose $y \in f(S) \cup f(T)$. Then either $y \in f(S)$ or $y \in f(T)$. If $y \in f(S)$, there exists $x \in S$ such that $f(x)=y$. Since x is an element of S, x is also an element of $S \cup T$, so $y \in f(S \cup T)$. Likewise if $y \in f(T)$ it follows that $y \in f(S \cup T)$.

It follows that $f(S \cup T)=f(S) \cup f(T)$.
(c) Consider $f:\{1,2\} \rightarrow 3$ given by $f(1)=3$ and $f(2)=3$. Then if $S=\{1\}$ and $T=\{2\}$, we see that $f(S \cap T)=f(\phi)=\phi$ but $f(S) \cap f(T)=\{3\} \cap\{3\}=\{3\}$.
(34) Let $f: B \rightarrow C$ be a function. We claim that f is injective if and only if $f(S \cap T)=$ $f(S) \cap f(T)$ for every pair of subsets S and T of B.

For the if direction, suppose that f is injective. Recall from question (33)b, which we did in class, that for any S and T subsets of B, we know that $f(S \cap T) \subset f(S) \cap f(T)$. Now let $y \in f(S) \cap f(T)$. This implies that $y \in f(S)$ and $y \in f(T)$. Then since $y \in f(S)$, there must be an element $x_{1} \in S$ such that $f\left(x_{1}\right)=y$, and since $y \in f(T)$, there must be an element $x_{2} \in T$ such that $f\left(x_{2}\right)=y$. I claim $x_{1} \neq x_{2}$. But then $f\left(x_{1}\right)=f\left(x_{2}\right)$, so since f is injective $x_{1}=x_{2}$, and therefore $x_{1} \in S$ and $x_{1}=x_{2} \in T$ are both true. This implies that $x_{1} \in S \cap T$, and therefore $f\left(x_{1}\right)=y \in f(S \cap T)$. Since y was an arbitrary element of $f(S) \cap f(T)$, we see that $f(S) \cap f(T) \subseteq f(S \cap T)$. Therefore since we have inclusions in both directions, we see that $f(S \cap T)=f(S) \cap f(T)$ if f is injective.

Conversely, suppose that $f(S \cap T)=f(S) \cap f(T)$ for every pair of subsets S and T of B. Then let x_{1} and x_{2} be any two elements of B such that $f\left(x_{1}\right)=y=f\left(x_{2}\right)$. Let $S=\left\{x_{1}\right\}$ and $T=\left\{x_{2}\right\}$. Notice that $S \cap T$ is empty if $x_{1} \neq x_{2}$ and equal to $\left\{x_{1}\right\}$ if $x_{1}=x_{2}$. Now by assumption we observe that $f(S \cap T)=f(S) \cap f(T)=$ $\left\{f\left(x_{1}\right)\right\} \cap\left\{f\left(x_{2}\right)\right\}=\{y\} \cap\{y\}=\{y\}$. This implies that $f(S \cap T)=\{y\}$ is nonempty, and therefore $S \cap T$ is nonempty. Hence $x_{1}=x_{2}$. Since x_{1} and x_{2} were arbitrary elements of B with $f\left(x_{1}\right)=f\left(x_{2}\right)$, we conclude that f is injective.

